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CHAPTER 1 INTRODUCTION

It has been decades since people started investigating nonadiabatic dynamics [1, 2]. In the

1930’s, following the first potential energy surface (PES) diagram made by Eyring and Polanyi in

their historic paper “Über einfache gasreaktionen” (On Simple Gas Reactions) in 1931 [3], Landau

and Zener separatedly discovered the Landau-Zener formula as an approximate solution to a two-

PES-level quantum dynamics problem in 1932 [4, 5].

Nonadiabatic effects play a crucial role in photoinduced molecular dynamics in condensed, as

well as gas phase, in small and large molecules, showing up in various kinds of photoinduced

reactions [1, 6, 7], including photo-dissociation [8, 9] and photo-isomerization [10, 11]. Conical In-

tersections (CIs) [12–14] play an extremely important role in all areas that involve nonadiabatic

transitions for a variety of reasons. First of all they are unavoidable in a sense that once you

have a single CI point, by the implicit function theorem [15], you immediately get a codimen-

sion 2, i.e., (d − 2)-dimensional Conical Seam (CS). In fact it is natural to interpret an avoided

crossing, i.e., two adiabatic Potential Energy Surface (PES) coming close, as the system just being

close to an unidentified CS(e.g., due to considering a reduced configuration space). Secondly, CIs

have been found computationally in a variety of molecules [16–18], by using clever identifying algo-

rithms [19,20], as well as multi-reference electronic structure methods [18,21,22] capable of handling

the symmetries, associated with electronic state degeneracy. Thirdly, CI are usually responsible for

ultrafast nonadiabatic transitions in gas phase [23–25], as well as ultrafast photo-relaxation [26,27]

and photo-isomerization [28, 29] in biological molecules, including such super-important examples

as photo-isomerization of rhodopsin [30–32].

CIs have been under theoretical/computational studies in terms of their electronic structure

[17, 33, 34], as well as wavepacket dynamics in both closed [35–37] and open (a molecule coupled

to environment/heat bath) [38–40] cases. The dynamical problem, however, is complex for a full

quantum treatment, even assuming one has perfect knowledge on PES and nonadiabatic couplings,

due to high dimensionality of the configuration space, even in the closed dynamics case. Even

sophisticated computational schemes, capable of performing quantum mechanical simulations [41–

43], including such clever approaches as spawning [44, 45], scale unfavorably with the number of

1
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atoms, so that much more cost-efficient semiclassical or/and mixed quantum-classical methods are

highly desired.

There is, however, an intrinsic issue on the way of developing semiclassical approaches capable

of handling nonadiabatic transitions in a proper way. As far as adiabatic dynamics is concerned,

there is an excellent understanding of the semiclassical limit, which is asymptotically exact, in

terms of the semiclassical Van-Vleck [46,47], or more sophisticated Herman-Kluk [48,49], providing

an intuitive picture for the case when semiclassical propagation is no longer quantitatively precise.

Such intuition is still to merge for the case of nonadiabatic transitions, despite several decades of

activity in the aforementioned field. There is a reason behind that. Although apparently not truly

appreciated in modern literature on nonadiabatic transitions, it is known since the 1950s [50] that in

the absence of level crossing, in the truly semiclassical ~→ 0 limit, the nonadiabatic effects vanish

in a non-analytical exponential ∼ exp(−1/~) way; therefore applying semiclassical approximations

that involve hopping far from true intersections, in a situation when the semiclassical parameter is

not small faces serious difficulties.

The surface hopping algorithms originally formulated by Tully [51,52] and further developed by

other authors [53,54], scale favorably with the system size, and provide an efficient tool for studying

nonadiabatic effects in molecular dynamics [6, 53, 55], especially in condensed phase [56, 57]. The

aforementioned algorithms generally address the problem of branching ratios and demonstrate an

ability to predict/interpret the latter with decent accuracy. However, due to the extremely intu-

itive nature of these algorithms (namely the associated Monte Carlo procedure does not converge

to the solutions of the Schrödinger equation), as well as not accounting for the wavefunction phase,

associated with the classical trajectories in between the hopping events, makes their capability to

predict the wavepacket shapes a big question. More sophisticated algorithms, see e.g., [58,59], that

represent an attempt to solve the Schrödinger equation using a valid Monte Carlo scheme, face

a problem of making a choice of which integrations in a path-integral representation should be

done in the saddle-point, and which should be performed numerically exactly using a Monte Carlo

procedure. The problem is usually referred to as the choice of initial conditions for the classical

trajectory after hopping [60,61], with the numerical results being choice dependent, which demon-

strates inconsistency of the scheme itself. Also the method apparently has not shown capability of

describing nonadiabatic dynamics near CSs.

2
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Advances in theoretical methods as well as in computational power have positioned quantum

chemistry as a powerful tool in studying various properties of multi-atomic molecules and molecular

complexes. [62, 63] Accurate, but numerically expensive, wavefunction based approaches enable

detailed description of electronic properties in relatively small molecules. In contrast, efficient

Density functional theory (DFT) methods in combination with molecular dynamics (MD) allow

one to deduce valuable information on ground state properties for molecules with hundreds of

atoms in size. [64] Further advances in time-dependent density functional theory (TDDFT) have

made it possible to carry our efficient calculations for exited states in these systems and thus predict

their susceptibilities, absorption and emission spectra, etc. [65]

At present quantum chemistry faces a new frontier: Now it aims not only at computations of

the equilibrium (static) molecular properties, but also at modeling dynamics of photophysical pro-

cesses and (photo)chemical reactions in molecular systems [6, 66]. The latter are characterized by

different reaction pathways that lead to different reaction products. For example, upon absorbing

a photon, a molecule may undergo radiative relaxation processes [67], such as fluorescence [68] and

phosphorescence; non-radiative relaxation processes, such as photodissociation [9,69,70] or photoi-

somerization; [71–74] charge [75–78] and energy transfer; [79–81] or intersystem crossing [82–84].

Such dynamics are obviously accompanied by electronic transitions, involving complex electron-

phonon interaction [85,86] and possibly many electronic states, and therefore can not be described

within the standard adiabatic or Born-Oppenheimer approximation. That is, while in the tradi-

tional adiabatic approximation the nuclei move along a given potential energy surface (PES) of

a molecule, description of photophysical or photochemical processes requires accounting for the

transitions between different PESs. Such transitions typically occur in the relatively small regions

of the phase space where the PESs closely approach or cross each other, so that the the energy sep-

aration between relevant PESs becomes comparable with inverse time scales of the nuclear motion

(in units of ~), i.e., phonon frequencies. Thus the assumption of separation between electronic and

nuclear timescales breaks down in the vicinity of electronic PES crossings and dynamics becomes

nonadiabatic.

Several approaches exist in the literature to treat the nonadiabatic dynamics within the frame-

work of quantum chemistry [2, 44, 87–93]. The most well known of these are mixed quantum

classical treatments, the Ehrenfest and surface hopping methods. The Ehrenfest method is easy

3
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to implement. It requires one to run a single trajectory of the nuclei, on an average PES, with

electronic populations being evaluated on the fly [94]. The simplicity of the implementation of the

method is flawed by its poor accuracy, related to its mean field nature. Usually different electronic

configurations are associated (“entangled”) with different paths of the nuclei and so the mean field

approach becomes inadequate when these paths are very dissimilar. In order to fix this problem,

Tully introduced a surface hopping approach, which accounts for the trajectory branching by run-

ning multiple trajectories that can hop between PESs [52]. Fewest switches surface hopping (FSSH)

has become the most popular approach for problems at various scales, from molecules to nanoclus-

ters [55, 95–100]. However, the method is built on ad-hoc assumptions and, as a result, frequently

fails to properly describe correlations between the trajectories of nuclei and electronic states. In

particularly, it does not take into account decoherence arising due to spacial separation between the

components of the nuclear wavefunctions corresponding to different electronic states (PES) and, as

a results, does not properly accounts for the intereference effects, etc. [101–103] Many approaches

exist in the literature for overcoming this decoherence problem. Some attempt to add decoher-

ence into Tully’s surface hopping procedure [102,104–116], while others involve rigorous treatments

at the density matrix level, e.g. quantum classical Liouville equation (QCLE) [117–123] and the

Meyer-Miller-Stock-Thoss [93, 124, 125] formalism. While these approaches all improve upon the

FSSH algorithm, they are often either too costly, lead to complicated algorithms, or may not be

accurate in certain scenarios.

The work presented here introduces a systematic way of studying nonadiabatic dynamics in the

semiclassical regime, and is based on the semiclassical nonadiabatic scattering theory first developed

by Piryatinski et al. [126]. in 2005. It is outlined in the following way: In Chapters 2 and 3, new

theories are developed based on the aforementioned previous work. In Chapter 2, an improved

theory with a discussion about nonadiabatic scattering region is given. In Chapter 3 an improved

theory including time reversal symmetry in given. In Chapter 4, the Semiclassical Monte-Carlo

algorithm is presented, which was first developed by Gorshkov et al. [58] in 2013, then presented

in details by White et al. [59].

4
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CHAPTER 2 PROPERTY OF SCATTERING REGION IN
NONADIABATIC DYNAMICS

2.1 Overview

In this chapter, we investigate the property of the scattering region of an even-number-electron

system. In the previous work by Piryatinski et. al. in 2005 [126], the semiclassical scattering at

conical intersection was studied, in which they used a two-level system with two nuclear degrees of

freedom. They proposed that, in the vicinity of the conical intersection, there exists a scattering

region. They argued that, in the semiclassical limit, the quantum fluctuation near the conical

intersection is neglectable, and the propagation of a nuclear wavepacket in this scattering region is

ballistic, i.e. propagates in a straight line with constant velocity. The Schrödinger equation was

solved in the semiclassical limit which gave a scattering matrix governing the scattering process.

Numerical calculation has been done in their study and shown better agreement with quantum

exact solution can be reached when the semiclassical scaling parameter is smaller, hence closer to

quantum situation. In our study, a two-level model of linear electronic potentials is used to further

study the property of scattering region near conical intersection. For a propagating wavepacket,

we suggest that in the vicinity of conical point, it will go ballistically and avoid going through the

conical point. Upon taking the semiclassical limit ~→ 0, we have proven that within a certain small

range of the conical point, the exact starting and ending point of the ballistic path does not matter.

The calculated result of propagation is governed by a classical propagator along the reference path

which connects the initial and final points, and an integration over the impact parameter, which

should be calculated numerically.

2.2 Theory

The fundamental quantity of quantum dynamics is the Schrödinger equation of a system

ĤΨ(r, re) = EΨ(r, re), (2.1)

where we introduce the electronic coordinates re, of dimension 3n, for an n-electron system; and

the nuclear coordinates r, of dimension k, for an arbitrary system with k degrees of freedom.

5



www.manaraa.com

In a 3-dimensional world of N particles without constraint then k = 3N . The Hamiltonian Ĥ

operator of the system consists of the nuclear kinetic T̂n and the electronic Hamiltonian operator

Ĥe. Solving the Schrödinger equation of Ĥe gives a set of electronic eigenfunctions {ψl(r, re)},

which is infinite dimensional as for a real physical system there should be infinitely many states.

This set of electronic eigenfunctions can be used as the basis set to expand the system wavefunction

Ψ(r, re), which is the well-known Born-Oppenheimer expansion [12,127]

Ψ(r, re) = χµ(r)ψµ(r, re), (2.2)

where Einstein notation is used; the vector χ(r) has elements as expansion coefficients and is of the

same dimension as electronic eigenfunction basis set, so Eq. (2.2) is just the inner product between

χ(r) and ψ(r, re). The choice of basis set {ψl(r, re)} determines the matrix V(r) of eigenvalues

for the Schrödinger equation of Ĥe. The often chosen orthonormal basis set diagonalizes V(r)

and is referred to as the adiabatic basis set. Since the nuclear kinetic operator T̂n is defined as

T̂n = −∑k
j=1(~2/2mj)∂

2/∂Rj
2, and for the simplicity of formulas we let mj = m for all j’s, then

we can define the nonadiabatic coupling vector A(r) with element A ν
aµ (r) from electronic states

ν to µ along nuclear coordinate direction Ra

A ν
aµ (r) =

∫
dre ψµ(r, re)

∂ψν(r, re)

∂ran
, (2.3)

where obviously ψµ(r, re = (ψµ(r, re))
∗ is the complex conjugate; A(r) has dimension k as a

vector, same as r; also has dimensions equal to the operators acting on the Hilbert space spanned

by electronic basis set {ψl(r, re)}. Using nonadiabatic coupling vectors we can rewrite Hamiltonian

Ĥ in the gauge invariant form. We also want to preserve time reversal symmetry of our question as

the system we would like to investigate is a closed shell even-number-electron system. By limiting

our discussion a two-level system, the electronic eigenfunction basis set is two dimensional, and the

corresponding Hamiltonian is

Ĥ(r) = − ~2

2m
(∇+ iσ̂yA(r))2 + V(r), (2.4)

6
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in which the eigenfunction is no longer Ψ(r, re) as in Eq. (2.1), but χ(r); while energy E(r)

remains the same. V(r) is now represented by Pauli matrices σ̂x, σ̂y, and σ̂z as V(r) = V0(r)σ̂0 +

Vx(r)σ̂x + Vz(r)σ̂z, σ̂0 is simply the 2× 2 identity matrix, and V0 is the auxiliary condition upon

which potential is defined. Now we can apply Legendre transform to obtain the corresponding L̂

from Eq. (2.4) and calculate the propagator K̂(τj , τi) from time τi to τj with initial and final nuclear

configurations r(τi) and r(τj) over all paths ξ’s:

K̂(τj , τi) =

∫

ξ
Dξ exp

(
i

~

∫ τj

τi

dτ L0

)
Û(ξ), (2.5)

where we separate the action into abelian part, for which the integration can be calculated normally,

and define the scalar Lagrangian L0(r, ṙn, τ) = mṙ2
n(τ)/2− V0(r(τ)), and non-abelian part, which

needs be integrated as time-ordered exponential Û(ξ):

Û(ξ) = Texp

(
− i

~

∫ r(τj)

r(τi)
drk Âk

)
, (2.6)

where we define Âk = (V̄(r), ~σ̂yA(r)), and V̄(r) = Vx(r)σ̂x + Vz(r)σ̂z which is the potential

matrix without auxiliary condition V0.

2.3 Two-level scattering model

Now to study the scattering dynamics of a two-level system with conical intersection, we consider

a schematic model of one particle where the conical intersection is represented by using two linear

adiabatic potentials Vβ(r) = f |r| and Vα(r) = −f |r|, where we let f > 0, r is the nuclear

coordinate. The auxiliary potential V0 is obviously 0 in this model. Since the angular momentum

is conserved so the space in which this particle’s trajectory lies is reduced to a 2-dimensional surface,

denoted as the xz-plane. We are interested in the process where a wavepacket starts to approach

the conical intersection from far away, while passing the wavepacket itself remains on the same

adiabatic PES, scattered at some angle and after that goes on to somewhere far from the conical

intersection; our question is, how would such a wavepacket be scattered at the conical intersection,

given by our two-level model?

To answer this question, we first define the adiabatic region, which is far enough from the

conical intersection such that nonadiabatic coupling vector A between our two states is small

7



www.manaraa.com

x

E

z

Vβ(r)

Vα(r)

Figure 2.1: A two-level adiabatic PES model shown in 2-dimensional Cartesian coordinate system.
Upper adiabatic PES Vβ(r) = f |r| shown in red, and lower adiabatic PES Vα(r) = −f |r| shown in
blue. Two nuclear degrees of freedom, longitudinal direction x and transversal direction z, nuclear
distance vector r satisfies r2 = x2 + z2.

enough that can be neglected, then we can treat the propagation in this region semiclassically and

adiabatically using Van Vleck propagator; we also define the scattering region, which is essentially

in the vicinity of conical intersection, in which the adiabatic approximation becomes invalid and we

need to calculate the propagator using Eq. (2.5) in diabatic basis set, the wavepacket propagation

is treated ballistically as V0 = 0 in L0, with quantum fluctuation included in Û . Now we claim

the following conjecture: In the intersection where adiabatic and scattering regions overlap with

each other, we can either calculate the propagation adiabatically using Van Vleck propagator, or

diabatically using Eq. (2.5).

To prove this conjecture, we first introduce two paths representing the aforementioned process,

considered and plotted in Cartesian coordinate (x, z): first is the reference path, shown in Fig. 2.2

by the purple trajectory, along which a wavepacket propagates from initial point (−r′, 0), at where

the center of the wavepacket is located, to conical point (0, 0), then get scattered at classical angle

θ, which is sufficiently small such that its momentum is still conserved within the semiclassical

limit, and propagates from the conical intersection to final point (r′′ cos θ, r′′ sin θ), which is ap-

proximately (r′′, r′′θ) and will be used from now on; second is the actual path, shown in Fig. 2.2

by the teal trajectory, the wavepacket propagates from (−r′, 0) to the vicinity of conical point,

then goes through the scattering region ballistically, i.e. in a straight line which does not pass the

8
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(−r′, 0)

(−r1 + λ1, ζ1)

(r2, r2θ)

(r′′, r′′θ)

(r2 + λ2, r2θ + ζ2) ξ

θ(−r1, 0)
x

z

ξ0

θ

Figure 2.2: The actual and reference path of wavepacket propagation. The cyan trajectory repre-
sents the actual path, denoted ξ; The violet trajectory represents the reference path, denoted ξ0;
Initial point (−r′, 0) and final point (r′′, r′′θ) are far from the conical point and in the adiabatic
region. Intermediate points (−r1, 0) and (r2, r2θ) are in the proposed overlapping region.

conical point (0, 0), to the other side of scattering region, and then propagates adiabatically to the

destination (r′′, r′′θ). We suggest two reference points: (−r1, 0) and (r2, r2θ), which lie in between

the adiabatic and scattering region. Introduce local coordinates (λ1, ζ1) around (r1, 0) and (λ2, ζ2)

around (r2, r2θ), so now the wavepacket goes through the scattering region from (−r1 + λ1, ζ1)

to (r2 + λ2, ζ2), then we can define the scattering length: rs =
√

~(r2 + r1 + λ2 − λ1)/f(t2 − t1),

adopted and updated from previous study [126].

Denote the initial time as t0, final time as t, at t1 the wavepacket reaches (−r1 + λ1, ζ1) and at

t2 it reaches (r2 + λ2, ζ2), also for convenience let τ = 0 at the instance the wavepacket arrives at

z = 0. Then in this model, by considering the variables in powers of ~, we have 1. r′, r′′, v, f ∼ ~0;

2. r1, r2, t1, t2 ∼ ~(1/2)−ε, where ε is some small positive number; 3. gs, λ1, λ2, ζ1, ζ2, θ ∼ ~1/2. So rs

is automatically of order ~1/2, while the inf of rs is smaller than the typical length of scattering

region, and sup of rs is far enough from the conical intersection for adiabatic approximation to be

valid. In the semiclassical limit, ~ → 0, since we need to calculate the propagator as exp(iS/~),

in the action we only have to keep the terms of order no more than ~, anything of order higher

than ~ would be insignificant when actually calculating the propagation numerically and can thus

be neglected.

Consider the dynamics of a wavepacket traveling along the actual path as in Fig. 2.2 while

staying on surface β, before and after the conical intersection, the Lagrangian L(ξ) described in

9
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polar coordinate is

L(ξ) =
m

2
(ṙ2 + r2ϑ̇2)− fr, r > 0. (2.7)

This Lagrangian is then used to evaluate the associated stability matrix MC(τj , τi). For reference

path, the angular momentum is 0 in this case and we have

pr(τ) = mṙ(τ) = ±
√

2m(E − fr(τ)), (2.8)

pr(τ) is negative when approaching the conical intersection, and positive when leaving it. La-

grangian of the system (in 1-dim) is

L =
m

2
ẋ2 + fx. (2.9)

We can write the total action along actual path on surface β, S(ξ) =
∫ t
τi
L(ξ) dτ , which is then

separated into three parts, where we further denote S1(ξ) =
∫ t1
τi
L(ξ) dτ , at time t1 the wavepacket

reaches the scattering region at (−r1 +λ1, ζ1); S2(ξ) =
∫ t
t2
L(ξ) dτ , at time t2 the wavepacket leaves

the scattering region from (r2 + λ2, ζ2); from t1 to t2 we have the ballistic action, denoted Sb(ξ)

and considered as a free propagation from (−r1 + λ1, ζ1) to (r2 + λ2, ζ2); the reason why we can

treat the action in scattering region as ballistic propagation is given by Eq. (2.5), as Sb(ξ) is just

the action from scalar Lagrangian L0, where V0 = 0. According to the scales we defined, in the

semiclassical limit we can treat the local coordinates as variations, by keeping up to the second

order terms, we can expand S1(ξ) as

S1(ξ) = S1(ξ0; t1, t0) + px(t1)λ1 + pz(t1)ζ1 + Λxλ
2
1 + Λzζ

2
1 , (2.10)

and S2(ξ) as

S2(ξ) = S2(ξ0; t, t2)− px(t2)λ2 − pz(t2)ζ2 + Θxλ
2
2 + Θzζ

2
2 , (2.11)

momenta are calculated by expanding Eq. (2.8) to the first order of rj ’s then converted into Carte-

sian coordinate. Second derivatives of actions are denoted by Λ’s and Ξ’s, which are defined in

10
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appendix D using parts from the stability matrix MC(τj , τi):

MC(τj , τi) =



A(τj , τi) B(τj , τi)

C(τj , τi) D(τj , τi)


, (2.12)

evaluated from initial τi to final τj in Cartesian coordinate, definitions of each submatrix are in-

cluded in appendix D, so the components in MC of our interests are A(τj , τi), B
(τj , τi), and D(τj , τi),

which can be calculated by first calculating the stability matrix MP(τj , τi) in polar coordinate then

converting into Cartesian coordinate. Actions S1(ξ0; t1, t0) and S2(ξ0; t, t2) are taken along the

reference path in Fig. 2.2 which can be calculated in the following way:

The action S1(ξ0; t1, t0) can be calculated using the abbreviated action since energy is conserved

S1(ξ0; t1, t0) =

∫ q(t1)

q(t0)
p dq −

∫ t1

t0

E dt

=

∫ r1

r′
dr (−

√
2mE − 2mfr)− E(t1 − t0)

=
2
√

2m

3f

(
(E − fr1)3/2 −

(
E − fr′

)3/2)− E(t1 − t0).

(2.13)

Similarily the action along reference trajectory S2(ξ0; t, t2) is given by

S2(ξ0; t, t2) =

∫ q(t)

q(t2)
p dq −

∫ t

t2

E dt

=
2
√

2m

3f

(
(E − fr2)3/2 −

(
E − fr′′

)3/2)− E(t− t2).

(2.14)

Ballistic action Sb(ξ) can be calculated easily since it’s a free propagation,

Sb =
m(r2 + r1)2

2(t2 − t1)
+ δSλ + δSζ , (2.15)

and its local corrections are:

δSλ =
m(r2 + r1)(λ2 − λ1)

t2 − t1
+
m(λ2 − λ1)2

2(t2 − t1)
, (2.16a)

and

δSζ =
mr2θ(ζ2 − ζ1)

t2 − t1
+
m(ζ2 − ζ1)2

2(t2 − t1)
. (2.16b)

11



www.manaraa.com

To evaluate the propagator in Eq. (2.5) from time t0 to t staying on surface β for our model, we can

split the propagator according to the way we treat these actions, and connect them by integrating

over local coordinates from −∞ to +∞, which is the collection of all paths passing through the

scattering region. Now we have K(t, t0) equals to

K(t, t0) =

∫
DξK(t, t2)K(t2, t1)K(t1, t0). (2.17)

By splitting the propagator, each of them can be calculated using the corresponding actions and

appropriately approximated, according to the domain in which they are defined. For K(t1, t0) and

K(t, t2), since they are away from the conical intersection with distance no smaller than the order

of ~(1/2)−ε, we can use the adiabatic basis set and calculate them as Van Vleck propagators [46].

Here we have:

K(t1, t0) = exp

(
iπn1

2

)
exp(iS1(ξ; t1, t0)/~)

2iπ~
√
|det(B(t1, t0))|

, (2.18)

and

K(t, t2) = exp

(
iπn2

2

)
exp(iS2(ξ; t, t2)/~)

2iπ~
√
|det(B(t, t2))|

, (2.19)

n1 and n2 are the Maslov indexes of each propagator [128]. For K(t2, t1), the ballistic action is

considered in the vicinity of conical intersection so we choose diabatic basis set where nonadiabatic

coupling vector is 0, to avoid the difficulty that when approaching the conical intersection in

adiabatic basis set nonadiabatic coupling would rapidly increase to infinity. Since we have chosen

the diabatic basis set for ballistic region, so the off-diagonal terms of matrix Û(ξ) correspond to

the same surface wavepacket propagation. For our model studying traveling and staying on surface

β, we need U12(ξ). Hence the ballistic propagation is

K(t2, t1) =
m exp(iSb(ξ; t2, t1)/~)U12(ξ)

2iπ~(t2 − t1)
, (2.20)

To evaluate these path integrals, we define λ− = (−κζ2 + (1 − κ)ζ1)/2κ(1 − κ) and λ+ =

κζ2 + (1−κ)ζ1, where κ = r1/(r1 + r2). We immediately realize that λ+ is the impact parameter of

our ballistic path by geometry. The time-ordered exponential Û(ξ) can be calculated as described

in previous study [12], for our model we define l1 =
√

2(−r1 + λ1)/rs, l2 =
√

2(r2 + λ2)/rs, and

12
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α =
√

2λ+/rs. Calculate exp(iS(ξ; t, t0)/~)U12(ξ) in the semiclassical limit by applying saddle point

method to λ− and calculating Gaussian integrals of λ1 and λ2, with the saddle point determined

as λ̄− = (1− 2κ)λ+ we arrived at the expression of K(t, t0):

K(t, t0) =
a(t, t0)√
r′r′′

Kcl(t, t0)

+∞∫

−∞

dλ+ Iλ+ , (2.21)

while the integrand Iλ+ equals to

Iλ+ =
√
P exp

(
mvθλ+

i~
+ ω ln

g2
s

2
− i arg Γ(ω)

)
, (2.22)

where ω = −ifλ2
+/2~v is the dimensionless phase factor which is of order ~0, dimensionless scaling

parameter gs =
√
m2v3/~f , and P = 1− exp(2πω/i) is the possibility amplitude introduced from

time-ordered exponential calculation [12]. Kcl is the classical propagator along the reference path

staying on surface β:

Kcl(t, t0) = exp

(
i

~
Scl(t, t0)

)
. (2.23)

So we can conclude that the propagator, in Eq. (2.21), we derived governed by the Lagrangian, in

Eq. (2.7), is independent of the midway points we assumed at where the propagation enters and

leaves the vicinity of conical intersection at which we would consider the nonadiabatic coupling is

too strong that we have to use diabatic basis set to describe the physical processes, without actually

finding and using diabatic basis set.

2.4 Conclusion

We have delivered a newer semiclassical model to compute the diabatic wavepacket propagation

along the same PES in a two-level system of potential functions Vα(r) = −f |r| and Vβ(r) = f |r|.

A propagation process is proposed, from adiabatic propagation, then to ballistic propagation, and

last back to adiabatic propagation. The corresponding actions are calculated using Van Vleck

propagator and stability matrices. We have proven that for our model, in the semiclassical limit,

there is an overlapping region near the scattering region where both the adiabatic propagator and

ballistic propagator for nonadiabatic dynamics are valid. We look forward to develop algorithm

based on this theory and do computational study. We would also like to generalize this result to
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two-level systems with potential energy surfaces of certain local symmetry in the vicinity of conical

intersection.
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CHAPTER 3 DYNAMICAL CONSEQUENCES OF
TIME-REVERSAL SYMMETRY IN NONADIABATIC

DYNAMICS

Reproduced from Chem. Phys., Volume 515, 2018, Pages 3-20, with the permission

of Elsevier B.V.

3.1 Overview

The goal of the presented study is to identify the implications of time-reversal symmetry and

topology, associated with unavoidable crossings, on wavepacket dynamics, with focus on half-integer

spin case. This is achieved via (i) investigating electronic structure using group invariance under

real structure transformations, (ii) establishing the topological invariants, associated with a CS,

(iii) extending the semiclassical approach of [126] to the half-integer spin case, characterized by the

Kramers permanent degeneracy, by addressing the Kramers permanent degeneracy for the adia-

batic Born-Oppenheimer dynamics, as well generalizing the ballistic approach that describes the

wavepacket evolution when passing a CS, and (iv) finally identifying the topological implications

on the scattered wavepacket shape. The chapter is organized as follows. In section 3.2 we discuss

the time-reversal symmetry for non-relativistic (with spin-orbit corrections) many electron systems,

with focus on the half-integer spin (odd electron number) case, and the major differences between

the aforementioned situation and the integer spin or no time-reversal symmetry (strong effects of

magnetic fields) counterparts. To provide a formulation, ready for studies of the dynamical conse-

quences of time-reversal symmetry, we identify the orthogonal SO(n), unitary U(n), and symplectic

groups Sp(n) as the ones, responsible for the symmetry in the integer-spin, no-symmetry, and half-

integer spin situations, naturally referring to them as the orthogonal, unitary, and symplectic cases.

We also provide a description of local structures of CSs in all three cases, within a unique fashion,

which is achieved by introducing the gamma-matrices, associated with spinors in lower an higher

dimensions, namely d = 2, d = 3, and d = 5. In section 3.3 we introduce the topological invariants

associated with CSs for all three aforementioned cases, represented by the first Stiefel-Whitney,

first Chern, and second Chern classes, respectively, focusing on their properties that unveil the

topological effects in wavepacket dynamics. The presentation is done on an intuitive level, keeping
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it to minimum, needed to understand the topological dynamical implications, using calculus and

linear algebra only, so it does not require from a reader any knowledge in topology or geometry.

We also describe a geometrical effect, associated with Kramers permanent degeneracy, and relate

it to “non-abelian Berry phase”. In section 3.4 we extend the Born-Oppenheimer, and correspond-

ing semiclassical approximations to the symplectic case, introduce the wavefunction polarization,

appearing as a consequences of Kramers degeneracy, and apply the parallel transport concept to

describe semiclassical evolution of the polarization. In section 3.5 we present the ballistic ap-

proximation, the main tool of studying the asymptotically exact semiclassical limit of wavepacket

evolution while it passes a CS, in a unique fashion, in particular allowing to apply the standard

expressions of the celebrated 2-state Landau-Zener problem to its 5-state counterpart, occurring in

the symplectic case, which is achieved by making use of the (Clifford) algebra of gamma-matrices,

which, in particular, justifies the formulation of time-reversal symmetry, given in section 3.2. In

section 3.6 we present an explicit analytical expression for the wavepacket that just passed through

a conical seam, analyze its shape, identify the topological nature of the latter, and connect it to

the topological invariants of CSs, described in section 3.3.

3.2 Time-Reversal Symmetry in Many-Electron Systems

Time-reversal symmetry that occurs in the absence of external magnetic fields, which is usually

the case in dynamics of molecular systems, has important implementations on the system dynamics.

In the simplest case of no spin the time-reversal transformation j is defined by jψ(r) = ψ∗(r), and

it commutes jĤ = Ĥj with the system Hamiltonian Ĥ. Such symmetry is coined time-reversal

due to the fact that if ψ(t) satisfies the dynamical Schrödinger equation i~∂tψ(t) = Ĥψ(t) then,

due to the above commutation property jψ(t) = ψ∗(t) satisfies the Schrödinger equation with the

same Hamiltonian, but for reversed time.

Since, by simple intuitive reason, presented above, time-reversal symmetry involves complex

conjugation, it is represented by an antilinear map j acting in the space of the system quantum

states, which means

j(u+ v) = j(u) + j(v), j(λu) = λ∗j(u) (3.1)

for any two states u, v and complex number λ. Note that antilinear is different from a “standard”

linear map through the second condition that in the linear case map reads j(λu) = λj(u).
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Time-reversal symmetry for spin 1/2 has been identified by Kramers, and can be described in

the following way. One can ask a question: How does an antilinear map j, referred to as a real

structure, look like that acts in a 2-dimensional complex vector space of the spin 1/2 and commutes

with the group SU(2) action? The latter property is equivalent to commuting with the generators

of the corresponding Lie algebra su(2), represented by −iσ = −(iσx, iσy, iσz), with

σ0 = I =




1 0

0 1


, σx = σ1 =




0 1

1 0


, σy = σ2 =




0 −i

i 0


, σz = σ3 =




1 0

0 −1


 (3.2)

being the Pauli matrices in on of their standard representations. A real structure j that satisfies

the aforementioned commutation property is represented by a matrix

j = ηiσy =




0 η

−η 0


, j



c1

c2


 =



ηc∗2

−ηc∗1


, j2 = −1. (3.3)

with η ∈ U(1) being a unimodular factor. The commutation properties follow from the commutation

relations σxσy = −σxσy, σyσz = −σzσy, and σzσx = −σxσz, combined with the anti-linearity of

j. The real structure, defined by Eq. (3.3) possesses two important properties: it preserves scalar

products in the sense

(j(u), j(v)) = (u, v)∗, (3.4)

and j2 = −1. A straightforward argument that involves the Schur’s lemma shows that Eq. (3.3)

completely classifies the real structures with j2 = −1 that preserve the scalar product. Hereafter

we choose η = 1. It is straightforward to verify that the Breit-Pauli Hamiltonian [129] commutes

with the real structure j obtained by applying j, defined by Eq. (3.3), to the spin variables of all

electrons. An obvious, bur extremely important consequence of the property of the spin 1/2 real

structure [see Eq. (3.3)] is j2 = (−1)N with N being the number of electrons, so that we have

j2 = 1 and j2 = −1 for the even and odd number of electrons, respectively, which leads to very

different electronic structure symmetry properties for molecules and radicals.

To describe a situation when a finite number of Potential Energy Surfaces (PES) are taken
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into account we should consider an n-dimensional complex vector space V (or, equivalently, a

2n-dimensional real vector space) that describes the space of electronic states for a given nuclear

configuration, n being the number of PES, taken into consideration, with an action j : V → V of a

real structure on it, and further identify the space of allowed electronic Hamiltonians, represented

by Hermitian operators h acting in V and commuting with j.

To recover a well-known picture, we start with the j2 = 1 case that corresponds to an even

number of electrons. The analysis is very simple: we consider V as a 2n-dimensional real vector

space with i : V → V representing multiplication with the imaginary unit i. Note that i and j can

be viewed as just linear maps acting in the 2n-dimensional real vector space V . Since j preserves

the scalar product in the real space it is an orthogonal operator. Generically an orthogonal operator

has pairs of mutually complex conjugated eigenvalues, however, due to the j2 = 1 condition, all

eigenvalues are ±1 and hence j is diagonalizable within the real space. Due to anti-linearity of j

we have ji = −ij, which means that if u is an eigenvector of j then i(u) is also an eigenvector, but

with an opposite eigenvalue. This implies that the space of states can be decomposed into a direct

sum V = W ⊕ i(W ), where W ⊂ V is an n-dimensional real subspace of the eigenvectors of j with

the unit eigenvalue. Equivalently it can be represented as

V = C⊗R W, j(λ⊗ u) = λ∗ ⊗ u, (3.5)

and the allowed electronic Hamiltonians are represented by real hermitian matrices that represent

operators acting in W . We can always choose the basis sets to belong to W , so that the basis

set transformations that preserve the scalar product are orthogonal, i.e., belong to the orthogonal

group O(n); therefore, hereafter we refer to this case as orthogonal. Note that such orthogonal

transformations are the ones that commute with the real structure j.

In the simplest case of n = 2 we have

h(r) = h0(r)σ0 + hx(r)σx + hz(r)σz, (3.6)

with σ0 being the unit 2 × 2 matrix, so that for the two PES to intersect in a generic (maximal

rank) situation, referred to as CSs, two conditions hx(r) = hz(r) = 0 should be satisfied, so that
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the CSs have codimension 2, as well known.

Before we switch to the j2 = −1 case we consider the case of no time-reversal symmetry (in the

presence of magnetic field) For n PES in the absence of time-reversal symmetry an orthonormal

basis set can be chosen up to a unitary transformation, so that we are dealing with the unitary

symmetry described by the unitary group U(n); therefore, hereafter we refer to this case as unitary.

In the case under consideration electronic Hamiltonians are described by just Hermitian operators

(matrices) without any further conditions, so that in the simplest n = 2 case Eq. (3.6) adopts a

form

h(r) = h0(r)σ0 + hx(r)σx + hy(r)σy + hz(r)σz, (3.7)

and the CSs have codimension 3.

At this point we turn to the case of odd number of electrons, i.e., half-integer total electron

spin, which corresponds to j2 = −1. Similar to the integer spin case we consider an n-dimensional

complex vector space of states V and view it as a 2n-dimensional real vector space equipped with

two linear maps i, j : V → V . We further introduce the third linear map k : V → V by k = ij. It is

verified in a straightforward way that i, j, and k anti-commute, and i2 = j2 = k2 = −1, as well as

ki = j and jk = i. This implies that we have a well-defined action of the non-commutative division

ring H of quaternions on V . We reiterate that a quaternion is represented q = a0 +a1i+a2j+a3k,

with (as|s = 0, . . . , 3) being a set of four real numbers; addition and multiplication of quaternions

is defined in an obvious way. As a vector space H ∼= C2 ∼= R4. A conjugate q∗ to q quaternion is

naturally defined as

(a0 + a1i+ a2j + a3k)∗ = a0 − a1i− a2j − a3k. (3.8)

The term division ring means that each nonzero element has an inverse with respect to multiplica-

tion, so that sometimes H is referred to as a non-commutative field.

Although quaternions are non-commutative, their “field” property provides a very simple and

universal structure of quaternion spaces, e.g., our space of states V , it allows for basis sets, and in

particular orthonormal basis sets, and a unique decomposition of any state as a linear superposition
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of the basis set elements with quaternion coefficients. A choice of a basis set allows a representation

V = H⊗R W, q(λ⊗ u) = (qλ)⊗ u, (3.9)

for u ∈W, q, λ ∈ H, where W is an m-dimensional real vector space with n = 2m.

Due to the basis set decomposition property transformations between the basis sets are repre-

sented by m×m matrices with quaternion entries. We can, however, further narrow down the class

of preferred basis sets. We can apply the analysis of appendix A and note that there is a naturally

defined action of the group Sp(m) on the space V of electronic states. We can also consider a class

of real orthonormal basis sets (see appendix A for some details) that are defined as orthonormal

basis sets of a special form

(e1, . . . , em, e
′
1, . . . , e

′
m) = (e1, . . . , em, j(e1), . . . , j(em)). (3.10)

Obviously, an invertible linear map A : V → V belongs to Sp(m) if and only if it transfers any

real orthonormal basis set to the basis set of the same kind. In physics terms we can say that in

the case of time-reversal symmetry and j2 = −1 (odd number of electrons), when we have n = 2m

PES, we are dealing with symplectic symmetry, described by the group Sp(m); therefore, hereafter

we refer to this case as symplectic. Note that since [j, Ĥ] = 0 an adiabatic basis set can be always

chosen to be real orthonormal, and all PES are double degenerate, being represented by pairs of

adiabatic states (ea, j(ea)).

We are now in a position to identify the electronic Hamiltonians h, represented by Hermitian

operators that commute with j. Using the quaternionic representation we find that they are given

by m×m quaternionic matrices with hba = h∗ab. In the simplest m = 2 case of n = 2m = 4 double

degenerate PES, and omitting the unit matrix that has nothing to do with the intersections, so

that we can deal with traceless matrices, we obtain a 5-dimensional space of matrices with a basis
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set to be chosen, e.g., as

γ1 =




0 i

−i 0


, γ2 =




0 j

−j 0


, γ3 =




0 k

−k 0


,

γ4 =




0 1

1 0


, γ5 =



−1 0

0 1


, γ0 =




1 0

0 1


.

(3.11)

A straightforward computation yields

γaγb + γbγa = 2δabγ0, γ5 = γ1γ2γ3γ4, (3.12)

with γ0 being the unit 2 × 2 quaternionic matrix. By implementing a standard 2 × 2 matrix

representation of quaternion units

1 7→ σ0, i 7→ iσx, j 7→ iσy, k 7→ iσz, (3.13)

we can view the 2×2 quaternionic matrices as 4×4 complex matrices that represent linear operators

acting in V in a real orthonormal basis set. Upon substitution of Eq. (3.13) into Eq. (3.11)

one can recognize (γa|a = 1, . . . , 4) as Euclidean Dirac gamma-matrices, written in the so-called

chiral representation, with γ5 being the product of four Dirac γ-matrices, so that (γa|a = 1, . . . , 5)

represent the five gamma-matrices, associated with the spinors in 5-dimensional space This implies

that an electron Hamiltonian (with the unit matrix omitted) that preserves time-reversal symmetry

adopts a form

h = h · γ =

5∑

a=1

haγa, (3.14)

with real coefficients ha.

For the Hamiltonians in Eq. (3.14) we have two double-degenerate PES with the energies ε =

±
√

(h,h), and the CI (Dirac) point at h = 0. Since for the conical points, associated with the

nuclear configurations, five equations h(r) = 0, should be satisfied, the CSs for the time-reversal

symmetry with an odd number of electrons have codimension 5.
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3.3 Conical Points and Associated Topological Invariants

We are now in a position to describe and compare the topological invariants associated with

CSs. We start with the orthogonal case that corresponds to systems of even number of electrons

with time-reversal symmetry. Consider a 2-dimensional vector space of electronic Hamiltonians

h = hxσx + hzσz, with the unit matrix that has nothing to do with the PES intersections omitted

from Eq. (3.6). We have for the electronic energies ε = ±
√
h2
x + h2

z, so that we have a CS at the

origin hx = hz = 0. We further surround the origin with a circle S1, defined say by h2
x + h2

z = ε2.

With each point (hx, hz) of the circle one can associate a 1-dimensional real space of real eigenstates,

say with the higher eigenvalue
√
h2
x + h2

z, and further ask a question whether one can identify

globally an adiabatic real normalized basis set, i.e., associate with each 1-dimensional eigenspace a

unit length vector in a continuous way. The answer is negative, since upon going over the circle the

eigenstate changes the sign. In physics/chemistry literature it is known as the topological Berry

phase, which assumes discrete values 0, π. In geometry/topology language one would say that the

aforementioned 1-dimensional bundle has a nontrivial first Stiefel-Whitney class w1 [130], which is

binary, rather than integer i.e., resides in Z2, rather than Z, or in other words is represented by

a sign ±1 factor. If we wind a circle around the conical seam, it will be mapped to the space of

electronic Hamiltonians by means of Eq. (3.6), which will give rise to the topological Berry phase

in its conventional sense (gaining a −1 factor upon winding around the conical seam). In other

words the topological Berry phase in the space of nuclear configurations r is completely induced

by its counterpart in the space of electronic Hamiltonians, the latter being described above.

In the unitary case of no time-reversal symmetry (e.g., in a famous example of a single spin

1/2 in a magnetic field) we consider a 3-dimensional vector space of electronic Hamiltonians h =

hxσx + hyσy + hzσz, with the unit matrix that has nothing to do with the PES intersections

omitted from Eq. (3.7). Similar to the time-reversal case we have the electronic energies ε =

±
√
h2
x + h2

y + h2
z, so that we have a conical (sometimes also referred to as diabolic) intersection at

the origin hx = hy = hz = 0. We further surround the origin with a (2-dimensional) sphere S2,

defined say by h2
x + h2

y + h2
z = ε2. With each point (hx, hy, hz) of the sphere one can associate

a 1-dimensional complex space of eigenstates, say with the higher eigenvalue ε, and further ask a

question whether one can identify globally a normalized adiabatic basis set, i.e., associate with each
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1-dimensional eigenspace a unit length vector in a continuous way. The answer is negative again,

and this can be rationalized as follows.

Denoting h = ε(n, nz) and n± = nx± iny, we can recast the eigenvalue problem (h ·σ)ψ = εψ,

for ψ = (ψ1, ψ2) in a form

(1− nz)ψ1 − n−ψ2 = 0,

−n+ψ1 + (1 + nz)ψ2 = 0,

(3.15)

where the two equations are equivalent. Two equivalent solutions can be naturally identified as

(ψ−1 , ψ
−
2 ) = (n−, 1− nz),

(ψ+
1 , ψ

+
2 ) = (1 + nz, n+)

(3.16)

with ψ̄± = (1/
√

2(1± nz))ψ± being the normalized counterparts. The solutions ψ± turn to zero

at the south and north poles of the sphere, respectively, which already provides evidence of an

impossibility of building a global adiabatic basis set.

We can extend the aforementioned evidence to a more rigorous argument. To that end we

note that the two normalized solutions, both representing a normalized adiabatic state should be

connected ψ̄+ = gψ̄− with g(n, nz) being a function that admits values in unimodular complex

numbers. We can easily see from Eq. (3.16) that g(n, nz) = n+

√
n∗+n+. Restricting g to any circle

that misses both poles, e.g., to equator we obtain the map g : S1 → U(1) that is topologically

non-trivial, have a nonzero degree deg g = 1, where the degree can be defined in an integral form

deg g =
1

2π

∫

S1

g−1 dg

dx
dx, (3.17)

or equivalently as the winding number that measures how many times g(s) winds around the target

circle that represents U(1), while s winds once around the domain circle S1. This implies that an

adiabatic basis set ψ− that is defined globally on the southern hemisphere, being recast on the

equator in terms of ψ+, defined globally on the northern counterpart, using a topologically no-

trivial map g may not be contracted on the northern hemisphere, so that a global basis set on the

whole sphere does not exist.

Similar to the orthogonal case, there is a topological obstruction to having a global adiabatic
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basis set, induced by the conical seam, however in the unitary case it is the first Chern class

c1 [130] that is integer-valued, rather than the binary first Stiefel-Whitney class. To demonstrate

that we consider the diagonal components of the nonadiabatic coupling terms, defined with respect

to the adiabatic basis sets ψ± on the northern and southern hemispheres, and represented by vector

potentials/gauge fields A±j , respectively. By Stokes theorem we have

∫

S1

A±j dx
j = ±

∫

D±

dA± = ±
∫

D±

εjkFjkd
2x (3.18)

with Fjk = (1/2)(∂jAk − ∂kAj) and εjk being the vector potential curvature (magnetic field)

and Levi-Civita symbol, respectively. The vector potentials are naturally connected by the gauge

transformation

A+
j = A−j + g−1∂jg, (3.19)

Integrating Eq. (3.19) over the equator, followed by making use of Eqs. (3.18) and (3.17) we arrive

at

1

2π

∫

S2

εjkFjkd
2x = deg g. (3.20)

The l.h.s. of Eq. (3.20) is known as an integral representation of the first Chern class c1 [130], so

that we have c1 = deg g, which identifies the first Chern class as the topological invariant, associated

with conical intersections in the unitary case.

The symplectic case of time-reversal symmetry for systems with odd number of electrons is

treated very similar to the unitary case: in the relevant situation of two Kramers doublets we

surround a conical point h = 0 with a 4-dimensional sphere S4, defined, say, by a condition

(h,h) = ε2. With each point h of the sphere one can associate a 2-dimensional complex subspace

of double-degenerate eigenstates, say with the higher eigenvalue, in the 4-dimensional complex state

of electronic states under consideration, which, according to the quaternionic approach, presented in

section 3.2, is equivalent to associating with each point a 1-dimensional quaternion vector subspace

of the 2-dimensional quaternion space of electronic states. We further ask a question whether one

can identify a global real orthonormal adiabatic basis set, i.e., associate with each 2-dimensional

24



www.manaraa.com

eigenspace a real orthonormal basis set, i.e. a pair (e, j(e)) with |e| = 1, in a continuous way, which

is equivalent to identifying a quaternion vector function ψ(h), with ψ = (ψ1, ψ2), that satisfies the

eigenvalue problem. The answer is negative again, and this can be rationalized exactly in the same

way as for the unitary case.

Indeed, denoting h = ε(n, nz) and n± = n4∓in1∓jn1∓kn3, the eigenvalue problem (h ·γ)ψ =

εψ, with the gamma-matrices given by Eq. (3.11) adopts the form of Eq. (3.15) and naturally has

the same solution as in the unitary case, given by Eq. (3.16), with the only difference that n±

are quaternions, rather than complex numbers, and (n, nz) resides in the 4-dimensional sphere S4,

rather than its 2-dimensional counterpart S2. In particular, the solutions ψ± have zeros at the

south and north pole of S4, while their normalized counterparts are connected

ψ̄+ = gψ̄−, g(n, nz) =
n+√
n∗+n+

(3.21)

via the function g that admits values in unit length quaternions, the latter forming the group

Sp(1), which by construction, as a space, forms a 3-dimensional sphere S3. Note that Eq. (3.13)

establishes an isomorphism Sp(1) ∼= SU(2), so that being restricted to S3 ⊂ S4, say, by fixing the

value of nz 6= ±1, e.g., to the equator for nz = 0, we obtain a map g : S3 → SU(2), which is, in

complete analogy with the unitary case is topologically non-trivial, which can be established by

generalizing the notion of the degree of a map g : Sn → Sn from the case n = 1, considered earlier,

and given by the winding number, to the case of any natural n. To that end we note that the

winding number of g : S1 → S1 can be measured by performing weighted counting of how many

times g(s) crosses some arbitrarily chosen reference point in the target S1, while s winds once along

the domain S1, with the weights represented by ±1 sign factors depending on the direction in which

g(s) goes through the reference point. The described procedure can be easily generalized to the

arbitrary dimension case by looking at the generically finite set g−1({s0}) of preimages of some

arbitrary chosen reference point s0 ∈ Sn and counting the preimages, weighting them with sign

factors, given by the signs of the Jacobian of g at the corresponding points. More formally we define

deg g =
∑

s∈g−1(s0) sgn(det(∂g(s)/∂s)). In complete analogy with the unitary case, we see that the

map g : S3 → S3, defined above, is one-to-one, and therefore, having a non-zero degree deg g = 1, is

topologically non-trivial, so that all arguments on the topologically nontrivial structure, introduced
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by a CS, presented above for the unitary case, work in the symplectic situation in the exactly same

way.

Similar to the unitary case the degree of g can be related to the Chern class, however, for the

symplectic situation it is the second Chern class c2 [130]. To see that we note that, in complete

analogy with the unitary case, there is an integral representation for the degree of our map g :

S3 → SU(2)

deg g =
1

24π2

∫

S3

Tr(g−1dg ∧ g−1dg ∧ g−1dg), (3.22)

rationalized by the fact (see appendix C for a more formal argument) that, up to a normalization

constant, the integrand is given by the Jacobian of g. Therefore, the original integral over the

domain of g can be interpreted as the integral of a constant function (whose value is determined

by the aforementioned normalization constant) over the target space of g, multiplied by an integer

factor that accounts for the multiplicity of the preimages of points in the target space. Recalling the

definition of the map degree presented above, it becomes intuitively clear that this factor is given

by deg g. Using a similar to the unitary, still more technically involved approach (see appendix C

for some details), and treating g as a gauge transformation of the diagonal nonadiabatic coupling

terms, the latter being considered as a non-abelian (Yang-Mills) SU(2) gauge field, described by

the matrix vector potential Aj = −i∑3
a=1A

a
jσa Eq. (3.22) can be recast in a form

1

8π2

∫

S4

Tr(F ∧ F ) = deg g. (3.23)

with F = Fjkdx
j ∧ dxk, where Fjk = (1/2)(∂jAk − ∂kAj + [Aj , Ak]) is the non-abelian curvature.

One recognizes the l.h.s. as a standard integral representation of the second Chern class c2 [130],

identifying it as the topological invariant, associated with conical intersections in the symplectic

case. Some details of a derivation of Eq. (3.23) from Eq. (3.22), more formal rationalization of the

latter, explanation why Eq. (3.23) reproduces the second Chern class, as well as necessary facts

and concepts, associated with differential forms, including wedge products and Stokes theorem,

involved in the aforementioned derivations, are presented in appendix C.

We conclude this section with noting that as opposed to the orthogonal, in the unitary and
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symplectic cases the proper adiabatic states are defined up to a continuous degree of freedom,

which sits in U(1) and SU(2), respectively, giving rise to diagonal components of the nonadiabatic

coupling terms. The corresponding vector fields Aj are geometrically non-trivial, i.e., they have

non-zero curvature Fjk, so that in the unitary case the effect of geometric (i.e., path-dependent)

Berry phase takes place. A similar effect occurs in the symplectic case, where instead of the phase,

as an element of U(1), we have an element of SU(2), hereafter referred to as non-abelian Berry

phase [131]. The latter will be discussed in some detail in section 3.4.

3.4 Born-Oppenheimer Approximation for Half-Integer Spin
Ca-se, Semiclassical Propagation, and Non-Abelian Berry Phase

The easiest way to rationalize semiclassical adiabatic dynamics for systems with time-reversal

symmetry and odd number of electrons (symplectic case) is no bring in the partial path integral

representation with matrix action, introduced, e.g., in [126], where the path integration is performed

over the nuclear position variables r, whereas the electronic counterparts are treated explicitly.

Being focused on the case of two (both double-degenerate) potential surfaces, and following [126],

we represent the Hamiltonian in a form

H = −
d∑

j=1

~2∇2
j

2mj
+

5∑

α=0

Uα(r)γa, (3.24)

with ∇j = ∂/∂rj −Aj being the “long” gauge-invariant derivatives. The Hamiltonian in Eq. (3.24)

can be viewed as a generalized 2-state Born-Oppenheimer (BO) approximation, with two double-

degenerate PES. It treats adequately intersections of the two chosen PES, and requires only the

rest of PES to be separated energetically, so that nonadiabatic coupling to them can be neglected.

It is obtained by projecting the original Hamiltonian to the electronic subspace spanned onto the

adiabatic states, which results in the standard expressions Aabj = 〈ψa(r)|∂ψb(r)/∂rj〉, where ψa(r),

with a = 1, . . . , 4 being some position-dependent orthonormal real (in the sense of section 3.2) basis

set in the space of electronic sates.

Assuming we are far away from CSs, we further apply the complete BO approximation, which

boils down to choosing an adiabatic basis set and neglecting the block off-diagonal components of

Aabj , i.e. the ones with a and b belonging to different adiabatic surfaces, making evolution on both
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surfaces independent of each other. The corresponding BO Hamiltonians have a form

H = −
d∑

j=1

~2∇2
j

2mj
+ U(r), (3.25)

with

U(r) = U0(r)± |U(r)| (3.26)

being the adiabatic energies, whereas the diagonal, in the aforementioned sense components Aj are

represented by 2×2 matrices Aabj , defined with respect to an orthonormal real basis set ψa(r), with

ψ2 = jψ1, and therefore,

Aj(r) = −i
3∑

µ=1

Aµj (r)σµ. (3.27)

The difference between the adiabatic evolution in the orthogonal and symplectic cases is that in

the latter the wavefunction has a 2-component vector character and there is a non-abelian matrix

gauge field that elongates the spatial derivatives.

Applying the path-integral representation to the evolution operator, associated with the adia-

batic Hamiltonian [Eq. (3.25)] in a way, described in the beginning of this section, we obtain

Ĝ(r′′, r′; t) =

∫ x(t)=r′′

x(0)=r′
Dx exp

(
i

~
S(x)

)
Û(x) (3.28)

with

S(x) =

∫ t

0
dτ

(
mẋ2(τ)

2
− U0(x(τ))

)
, Û(x) = T exp

(∫

x
dr ·A

)
. (3.29)

The semiclassical adiabatic propagator is obtained by neglecting the trajectory fluctuations

around the classical counterpart in computing Û(x), so that the path integral represent just the

standard adiabatic propagator, followed by applying the van Vleck semiclassical approximation to
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the latter, resulting in

Ĝ(r′′, r′; t) = G0(r′′, r′; t)Û(xcl(r
′′, r′; t)) (3.30)

with G0 denoting the van Vleck semiclassical propagator,so that Eq. (3.30) solves the problem of

adiabatic dynamics in the semiclassical approximation. Semiclassical evolution near CSs, where

the adiabatic approximation breaks down is considered in section 3.5.

The vector character of a Kramers doublet, considered in this section is naturally described in

terms of the wavepacket polarization ζ(r) defined by the conditions Ψ(r) = |Ψ(r)|ζ(r) and |ζ(r)| =

1, so that the polarization is represented by a nuclear position dependent unit vector in the 2-

dimensional complex vector space of electronic states of a Kramers doublet, so that the polarization

ζ(r) ∈ S3 resides in a 3-dimensional sphere. Obviously the second (matrix) factor in the r.h.s. of

Eq. (3.30) affects the polarization only, keeping |Ψ(r)| unchanged. However, the first (scalar) factor

that represents the standard Van Vleck propagator, also affects the polarization, e.g., due to the

phase factor ei~
−1Scl that originates from the classical action. Still the evolution of polarization

dynamics can be completely decoupled from the scalar Van Vleck evolution via introducing the

reduced polarization ζ̄(r) by considering two values of polarization ζ and ζ ′, represented by two unit

2-dimensional complex vectors, the same, if the latter differ by a unimodular factor. The reduced

space of the described above equivalence classes is represented by the complex projective line CP 1,

the latter being topologically equivalent to the 2-sphere S2. The reduction map S3 → S2 that maps

the polarization to its reduced counterpart is known in topology as a Hopf map. The aforementioned

unimodular factor can be absorbed by the scalar part of the nuclear wavefunction, so that the latter

can be represented by a complex-valued scalar wavefunction and reduced polarization ζ̄, instead

of the polarization ζ and a real “wavefunction” |Ψ|, so that within the new (reduced polarization)

representation picture, the scalar (Van Vleck) and polarization evolution are completely decoupled.

It follows immediately from Eq. (3.30) that semiclassical evolution of the wavepacket (reduced)

polarization is of completely geometric nature, and is related to multiple phenomena, which,

in particular include adiabatic propagation of a spin in time-dependent magnetic field, rotating

cats/astronauts, stochastic current, generated by adiabatic driving, and are often referred to as

Berry phase phenomena. Indeed, the geometrical meaning of the vector potential/gauge field that
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represents the diagonal component of the nonadiabatic coupling terms is that it determines the

parallel transport of the electronic state along a trajectory, as illustrated in Fig. 3.1. This is why in

differential geometry it is referred to as a connection. The same connection appears in a different

setting when the electronic Hamiltonian depends not on additional variables, in our case nuclear

coordinates, but rather just on time. In the unitary case this would be a problem of a spin in a

time-dependent magnetic field; in this case Û(C), with C being a path in the 3-dimensional space

of electronic Hamiltonians h, belongs to U(1) and for a closed path (loop) reproduces exactly the

celebrated Berry phase. In the symplectic case the phase becomes non-abelian, i.e., it belongs to

SU(2), as outlined in [131].

n′

n′′

∆n

r′

r′′

Figure 3.1: Geometric nature of wavepacket polarization evolution, described by parallel transport.
The wavepacket polarizations n′ and n′′ at different times belong to different subspaces. The new
polarization value n′′, interpreted as a result of parallel transport over an infinitesimal time period,
is uniquely determined by two conditions: n′′ should be normalized, and the polarization change
∆n should be orthogonal to its initial value n′.

3.5 Semiclassical Theory for Nuclear Wavepacket Propagation
Through a Conical Seam

In this section we obtain explicit asymptotically exact expressions for the evolution of nuclear

wavepackets in the presence of CSs in the semiclassical regime for all three situations, with focus

on the symplectic case that corresponds to the half-integer spin. Compared to the integer-spin

counterpart the half-integer situation is treated in a similar way, it is just technically more involved.

As outlined in [126] for the “standard” integer spin case, as long as the wavepacket is not close

to a CS, i.e., outside of the conical scattering region, it is moving adiabatically, which means

that in the semiclassical regime a standard Van Vleck semiclassical propagator can be applied for

asymptotically exact description of the system evolution (we reiterate that the Van Vleck propagator
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approach is equivalent to the Gaussian Ansatz for wavepackets). When the wavepacket passes

through the CS, ballistic approximation is valid in the semiclassical regime. The described approach

in fact works due to the overlap of the adiabatic and ballistic regions, as clearly demonstrated

in [126]. The semiclassical approach for the adiabatic region has been extended to the half-integer

spin case in section 3.4, including effects of the non-abelian Berry phase.

Since the goal of [126] was to extend the Van Vleck semiclassical propagator to the case of

the presence of CSs, evolution in the scattering region was described on the level of the ballistic

propagator, which was obtained by bringing in the path-integral approach with matrix contribution

to the action, followed by neglecting the fluctuation of the nuclear trajectory in computing the time-

ordered exponential, associated with the matrix component of the action. Of course the wavepacket

evolution in the vicinity of a CS can be readily obtained by applying the ballistic propagator to the

incoming wavepacket, however, in this chapter we will derive explicit expressions for the wavepacket

evolution directly from the dynamical Schrödinger equation. The advantages of this way include

simplicity of the derivation, bypassing additional integration involved in applying the propagator

to the incoming wavepacket, as well as relative easiness in connecting the ballistic and adiabatic

solutions in the overlap region.

The ballistic approximation starts with switching to a diabatic basis set (the use of the indefinite

article is important), defined by a condition A(r0) = 0, with the point r0, where the wavepacket,

whose size scales ∼
√
~, crosses the conical seam, being well defined in the semiclassical ~ → 0

limit, followed by introducing the time-dependent wavepacket position R(t) = R0 + v(t− t0), and

representing the system wavefunction in a form

Ψ(r, t) = exp
(
i~−1p · (r −R(t))

)
Ψ̄(r −R(t), t), (3.31)

with p = mv and v being the wavepacket momentum and velocity, respectively. Upon substitution

of Eq. (3.31) into the dynamical Schrödinger equation we obtain

i~
∂Ψ̄(r, t)

∂t
= (HB(t) +H1)Ψ̄(r, t) (3.32)
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with

HB(t) = − p
2

2m
+ ĥ(rL(r, t)), H1 = −~2∂2

2m
, (3.33)

rL(r, t) = R(t)+r, ĥ(rL) = h(rL) ·γ, and ∂2 being the Laplace operator. The ballistic approxima-

tion boils down to neglecting the H1 term in the r.h.s. of Eq. (3.32) turning the PDE [Eq. (3.32)]

into a family of ODE parameterized by r, whose solutions can be explicitly represented in terms

of time-ordered exponentials, resulting in:

Ψ̄(r, t) = eiSB/~T exp

(
− i

~v2

∫

C
ĥ(r′)v · dr′

)
Ψ̄(r, t0), (3.34)

with C and

SB =
mv2(t− t0)

2
(3.35)

being the straight (ballistic) path that connects rL(r, t0) to rL(r, t), and the ballistic action, re-

spectively.

An explicit expression for the evolution in the ballistic approximation [Eq. (3.34)] has a very

simple and natural interpretation, namely there are two factors that affect the evolution: (i) the

wavepacket is moving ballistically, i.e., with a constant velocity v, and (ii) the (vector) value of the

wavefunction for any position r in the moving frame is evolving according to the value ĥ(rL(r, t))

of the matrix Hamiltonian at the corresponding point in the laboratory frame. The aforementioned

interpretation is illustrated in Fig. 3.2.

We will apply the ballistic approximation to the region around the conical seam, where the posi-

tion dependence ĥ(x) can be linearized, We further note that the expression for ballistic propagation

[Eq. (3.34)] is valid for short enough times for any matrix Hamiltonian ĥ(x) and a configuration

space of any dimension. In particular, the aforementioned expression is capable of handling all

three, namely the orthogonal, unitary, and symplectic, cases in the configuration space of arbitrary

dimension. On the other hand, during the ballistic process of the wavepacket crossing a CS, nothing

happens to the wavepacket shape along the CS, with all changes occurring in the transverse direc-

tions. Therefore, for the sake of presentation clarity/simplicity, and to avoid notational clutter we
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t0 t

v

C

rL(r, t0)

r

rL(r, t)

r

Û = T exp
(
− i

~v2

∫
C
ĥ(r′)v · dr′

)

rL(r, t) = rL(r, t0) + v(t− t0)

Figure 3.2: Illustration of ballistic wavepacket propagation, using the laboratory frame, in which the
wavepacket moves with a constant velocity v, i.e., ballistically. The molecular configuration vector
r in the proper frame, associated with a moving wavepacket, shown as red, stays unchanged, while
its laboratory frame counterpart changes from rL(r, t0) to rL(r, t). The dashed line represents the
integration path C in Eq. (3.34).

will set the configuration space dimension to d = 2, d = 3, and d = 5, for the orthogonal, unitary,

and symplectic cases, respectively, postponing a very simple discussion of a truly straightforward

extension to the arbitrary dimension case to section 3.6. In all three cases, for the aforementioned

dimensions, the CS is represented by a single point, located at the coordinate origin. The deriva-

tions, as well as the final expressions, become most compact upon implementing an appropriate

coordinate system r = (x, z) in the configuration space and an appropriate basis set in the relevant

subspace of electronic states.

We start with the simplest orthogonal case, in particular setting d = 2. We first linearize the

dependence ĥ(x). We then choose the direction ez of the z-axis in the wavepacket velocity direction,

and further rotate the basis set in the 2-dimensional electronic space to achieve ĥ(ez) = fσz for

some f . We further identify the direction ex of the x-axis by imposing the condition ĥ(ex) = fσx,

to arrive at

ĥ(x, z) = f(xσx + zσz), (3.36)

with f being a (scalar) force constant. Note that it is due to the coordinate/basis choices, described

above, we were able to replace a 2× 2 force constant matrix with a single scalar counterpart.

In the unitary case we choose ez and rotate the basis set in exactly the same way as in the
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orthogonal situation, achieving ĥ(ez) = fσz, whereas ex and ey are identified in a similar way from

the conditions ĥ(ex) = fσx and ĥ(ey) = fσy, resulting in

ĥ(x, z) = f(x · σ + zσz), (3.37)

with x = (x, y) and σ = (σx, σy).

For the symplectic case, in a similar way, we choose e5 to be along the wavepacket velocity and

further achieve ĥ(e5) = fγ5 via the electronic space basis set choice, and further identify ej from

the conditions ĥ(ej) = fγj , for j = 1, 2, 3, 4. This results in

ĥ(x, z) = f(x · γ + zσz), (3.38)

with x = (x1, x2, x3, x4) and γ = (γ1, γ2, γ3, γ4). Note that the unitary case [Eq. (3.37)] can be

represented in the form of Eq. (3.38) by setting γ = (σx, σy) and γ5 = σz.

Following [126] we introduce the scattering rs and ballistic rB length scales

rs =
√

~v/f, rB =
(
m~v3/f2

)1/3
, (3.39)

so that the matching region, where both the ballistic and adiabatic approximation are valid is

defined by

rs � r � rB, (3.40)

and the overlap rs � rB of the ballistic and adiabatic regions is provided by the condition gs � 1,

with the dimensionless parameter that controls applicability of our semiclassical approach given by

gs =
√
f~/m2v3, rs/rB = g1/3

s . (3.41)

for the orthogonal case, we further introduce the dimensionless parameter l that parameterizes

ballistic trajectories and the dimensionless impact parameter α

l = (
√

2/rs)(z0 + vt), α =
√

2x/rs, (3.42)
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so that the time-ordered exponential in Eq. (3.34) is obtained by solving a linear ODE

i
d

dl
Ψ(l) =

1

2
(ασx + lσz)Ψ(l). (3.43)

The time-ordered exponential in Eq. (3.34) is therefore given by the evolution operator, associ-

ated with Eq. (3.43),

Û(l2, l1) =



ud(l2, l1) ua(l2, l1)

−u∗a(l2, l1) u∗d(l2, l1)


 (3.44)

which, in the relevant for us limit l1 → −∞ and l2 → ∞, is given by the scattering matrix of the

celebrated Landau-Zener (LZ) problem

ud =
√
Pde

−iΦd , ua =
√

1− Pde
−iΦa , Φd = Φ2 − Φ1, Φa = Φ2 + Φ1 − δ(α), (3.45)

with Pd(α) = exp
(
−πα2/2

)
, Φj = (l2j + α2 ln |lj |)/4 = Φ(lj ;α) are the LZ probability to stay on

a diabatic level and the adiabatic phases, respectively with j = 1 and j = 2 corresponding to

the initial and final points of a ballistic trajectory. The nonadiabatic phase shift δ(α) = π/4 −

argΓ(−iα2/4) is expressed in terms of the Euler gamma function Γ(z).

The expressions, provided by Eqs. (3.44) and (3.45), being substituted into Eq. (3.34) fully

describe the asymptotically exact semiclassical scattering of a wavepacket on a conical scheme for

the orthogonal case. In order to apply them to the unitary and symplectic cases in an almost

straightforward way we recast them in a form

Û =
√
Pd(γ0 cos Φd − iγ5 sin Φd) +

√
1− Pd(γ5γ cos Φa − iγ sin Φa), (3.46)

with γ0 = σ0, γ = σx, and γ5 = σz. Using the introduced notation Eq. (3.43) is naturally

represented in a form

i
d

dl
Ψ(l) =

1

2
(αγ + lγ5)Ψ(l). (3.47)

The key observation on the way of extending our expressions to the unitary and symplectic cases

is that both Eq. (3.47) and the associated evolution operator [Eq. (3.46)] are expressed in terms of

an algebra, generated by γ0, γ, and γ5 with the relations γ2 = γ2
5 = γ0, γ5γ = −γγ5 (anticommute),
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and γ0 being the unit. Therefore, for any matrices with the described above relations the evolution

operator, associated with Eq. (3.47), is given by Eq. (3.46).

In the unitary and symplectic cases, when the position is described by (x, z), the impact pa-

rameter x, associated with a ballistic trajectory is of vector nature, and is naturally represented as

x = xn, with n being a unit vector, so that x can be interpreted as a scalar impact parameter. For

the unitary case, defining γ = n ·γ with, as described above γ0 = σ0, γ = (σx, σy), and γ5 = σz, we

find that the equation that describes the relevant time-ordered exponential is given by Eq. (3.47),

which immediately implies that the associated evolution operator Û is given by Eq. (3.46) with the

described above values of the γ-matrices, so that after some straightforward algebra we arrive at

Û =




√
Pde−iΦd

√
1− Pde−iΦan+

−√1− PdeiΦan−
√
PdeiΦd


 (3.48)

with n± = nx ± iny.

The symplectic case is treated exactly in the same way setting γ = n · γ, with γ0, γ =

(γ1, γ2, γ3, γ4), and γ5 given by Eq. (3.11). Using a standard matrix representation of the quater-

nionic units in terms of the Pauli matrices [Eq. (3.13)], we obtain upon its substitution into

Eq. (3.46), followed by straightforward algebra

Û =




√
Pde−iΦdσ0

√
1− Pde−iΦau(n)

−√1− PdeiΦau†(n)
√
PdeiΦdσ0


 (3.49)

with n = (η, n4), so that η2 + n2
4 = 1 and

u(n) = n4σ0 + iη · σ (3.50)

being a direction dependent unitary matrix. Note that Eq. (3.50) provides a standard global

parameterizations of the unitary group, in particular establishing an isomorphism S3 ∼= SU(2).

It is useful to note that Eq. (3.48) can be represented in the form of Eq. (3.49) by introducing

u(n) = n+, so that u(n) denote the maps u : S1 → U(1) and u : S3 → SU(2) for the unitary and

symplectic cases, respectively, and in both cases the degree of the relevant map is deg (u) = 1.
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Since the expressions in Eqs. (3.48) and (3.49) are represented in a diabatic basis set, the

diagonal and off-diagonal elements of the 2× 2 and block 2× 2 matrices describe the nonadiabatic

and adiabatic processes, respectively, so that that the wavepacket components that changes the

adiabatic surface does not show any dependence on the direction n of the impact parameter,

whereas the counterpart that stays on it shows a topologically nontrivial dependence on n, which

will be discussed in some detail in section 3.6.

3.6 Topological Properties of a Scattered Wavepacket

In this section we obtain analytical expressions for the wavepacket, right after passing the CS,

with focus on its polarization structure, and study the topological properties of the latter. We start

with deriving an explicit expression for the scattered wavepacket,which can be readily obtained by

substituting Eq. (3.48) or Eq. (3.49) into Eq. (3.34), as explained in section 3.5.

Indeed, let Ψ̄1(x; z) = Ψ̄1(n, x; z) be the incident wavepacket at the initial time t0; the coordi-

nates are relative to the wavepacket position that by definition lies on the ballistic trajectory that

goes exactly through the conical point, which means that the position is completely defined by

z1 < 0, so that the actual position of a configuration in the wavepacket is (x; z1 + z). Note that if a

wavepacket has a well-defined center, e.g., in the Gaussian case, the position is generically shifted

with respect to the center by the impact parameter of the ballistic trajectory, associated with the

center. Let z2 > 0 be the position of the scattered wavepacket, at time t, with the obvious relation

z2 = z1 +v(t− t0), and let Ψ̄2(x; z) = Ψ̄2(n, x; z) be the scattered wavepacket, with the coordinates

naturally defined relative to the new position.

Being focused on a more interesting case of the wavepacket staying on an adiabatic surface we

obtain, e.g., for the upper adiabatic surface

Ψ̄2(n, x; z) = eiSB/~
√

1− Pd(
√

2x/rs)e
−iΦau(n)Ψ̄1(n, x; z), (3.51)

with

Φa = Φ(
√

2(z1 + z)/rs;
√

2x/rs) + Φ(
√

2(z2 + z)/rs;
√

2x/rs)− δ(
√

2x/rs), (3.52)
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so that evaluating the r.h.s. of Eq. (3.51) we arrive at the following explicit expression

Ψ̄2(n, x; z) = eiScl/~e−i(z1+z2)z/r2
s−i(x2/(2r2

s )) ln(2|z1z2|/r2
s )

×
√

1− exp(−πx2/r2
s )eiπ/4−iargΓ(−ix2/(2r2

s ))−iz2/r2
s

× u(n)Ψ̄1(n, x; z),

(3.53)

with the classical action

Scl =
mv2(t− t0)

2
− fz2

1 + fz2
2

2
v. (3.54)

The final expression for the wavepacket scattering [Eqs. (3.53) and (3.54)] can be interpreted

in the following way. The scalar and matrix factors in the second and third lines of the r.h.s. of

Eq. (3.53) are independent of the initial z1 and final z2 positions and describe strong nonadiabatic

effects, associated with the wavepacket passing through the conical seam. The action Scl is easily

identified as the action, associated with a classical particle of mass m ballistic propagation exactly

through the conical point in the potential V (z) = f |z| of the upper adiabatic surface, taken in

the diabatic approximation. The remaining factor in the first line of the r.h.s. provides a z1- and

z2-dependent correction to the wavepacket momentum, and a Gaussian correction to its shape,

represented by the first and second terms in the exponent, respectively. They are responsible

for the semiclassical adiabatic dynamics of the wavepacket in the matching region rs � r � rB,

where the ballistic approximation also holds. This factor plays an important role in connecting the

wavepacket dynamics in the adiabatic and ballistic region, ensuring the independence of the final

result on a particular choice of the intermediate points z1 and z2, as long as both belong to the

matching region.

We reiterate that, as observed earlier, Eq. (3.53) describes both the unitary and symplectic

cases by interpreting u as u : S1 → U(1) and u : S3 → SU(2). We further note that the orthogonal

case also fits the aforementioned expression by setting u : S0 → Z2 to an identity map, making use

of S0 = {−1, 1} = Z2.

We are now in a position to identify the topological properties of the scattered wavepacket

that are completely determined by the matrix factor in the last line of Eq. (3.53). We start with
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the simpler unitary case in its minimal dimension d = 3. In the frame, moving together with the

wavepacket, hereafter referred to as the proper frame, the conical point moves with a constant

velocity −v, pinching the wavepacket along a segment of a straight line, hereafter referred to as

the conical trajectory, as shown in Fig. 3.3. According to the earlier agreement the wavepacket

position should be chosen as a point that belongs to the conical trajectory. The z-axis in Fig. 3.3

is not orthogonal to the x = (x, y) plane, since, as explained in section 3.5, we use a coordinate

system that diagonalizes the matrix of the force constants at the conical point, rather than the

mass matrix mij , with the second one usually referred to as the reduced coordinate system. By

the same reason the lines of constant values of z and x = |x| appear to be ellipses, rather than

circles; however they are still circles topologically and therefore will be denoted S1. Recalling our

definition of polarization, given at the end of section 3.4 for the symplectic case, adopting it to

the unitary case, and applying it to Ψ̄, rather than Ψ, with the two related via Eq. (3.31), we

have Ψ̄(x, z) = ζ(x, z)|Ψ̄(x, z)|, and further observe from Eq. (3.53) that, if the polarization of the

incident wavepacket is (x, z)-independent, than the phase of ζ acquires 2π upon performing a full

rotation over the circle S1, reflecting the fact that the degree of the map ζ : S1 → U(1) is deg ζ = 1.

The fact that the degree of a map is a topological (strictly speaking, homotopy) invariant, makes it

robust. In particular, we will still have deg ζ = 1 for any, generically curved path that winds along

the trajectory of the conical point once. Secondly, the topologically nontrivial structure of the

scattered wavepacket will still be in place if the initial polarization is not necessarily homogeneous,

but also in the case when its phase is well-defined, which happens, e.g., in the case when the

wavefunction does not have zeros within its support. This is true, e.g., for a very relevant example

of a Gaussian wavepacket, and not true for the scattered counterpart that has zeros on the conical

point trajectory. Third, if one finds even a single circle with the nontrivial associated deg ζ = 1, this

immediately implies that the wavefunction will turn to zero on some line within the wavepacket,

which follows from the argument that the wavefunction should turn to zero at at least one point

on any disc, spanned onto the circle. The latter follows from a standard topological argument and

is intuitively obvious.

The topologically non-trivial structure of the scattered wavepacket, namely, deg u = 1, for

the map u, associated with a circle, that winds around the conical trajectory, is directly related

to the non-trivial value c1 = 1 of the first Chern class, which represents the relevant topological
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Figure 3.3: Nontrivial topological structure of the scattered wavepacket. The red line represents the
conical trajectory that, in the proper frame, associated with the wavepacket, pinches the wavepacket
along z-axis, where the wavefunction turns to zero (nodal line). The polarization vector performs
a complete 2π rotation along any circle that surrounds the conical trajectory (two are shown).

invariant associated with conical seams in the unitary case. An argument that demonstrates the

aforementioned relation is illustrated in Fig. 3.4. It is based on considering a circle that lies inside

the wavepacket in its adiabatic region, and winds around the conical trajectory, e.g., by fixing the

value of z, say to z = 0. In the laboratory frame, upon ballistic motion of the wavepacket, this

circle will span a cylinder, as shown in Fig. 3.4. Spanning 2-dimensional discs D2 on the initial

and final circles we obtain a surface, topologically equivalent to S2, that winds around the conical

point, and therefore, the upper adiabatic level, associated with the surface, has Chern class c1 = 1.

Fixing the phase of the adiabatic state on the initial disc according to the actual wavefunction, we

can then extend it to the cylinder by applying adiabatic propagation, resulting in a well defined

basis, defined on the surface, except for the final disc. As for the final disc, it is natural to fix

the phase to be position independent. By the arguments, presented in section 3.3, the latter basis

set, being restricted to the circle is connected to its counterpart, restricted from the cylinder, i.e.,

obtained from solving the dynamical problem, via a map g : S1 → U(1) with degree deg g = c1, so

that the topological structure of the final wavepacket, namely deg ζ = deg g = 1 for its polarization

ζ, is determined by the value c1 = 1 of the topological invariant, associated with the conical seam.

The more relevant symplectic case is analyzed in an absolutely similar way. In fact all arguments,

presented above for the unitary case, stay conceptually the same, with just a couple of differences in
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CI∼=

Figure 3.4: Illustration of the argument that connects the topologically non-trivial structure of the
scattered wavepacket to the Chern class, associated with a CS, represented by a single point. Red
vectors show the wavepacket polarization in the adiabatic region, using an appropriate adiabatic
basis set that does not have singularities inside the initial wavepacket. In the adiabatic region
polarization is preserved by ballistic evolution. Blue vectors show the final polarization using an
alternative and appropriate basis set that is regular within the scattered wavepacket. By the topo-
logical argument polarization in the appropriate basis set shows nontrivial topological structure.

details. Namely, the minimal space dimension should be changed from d = 3, to d = 5, the circles

S1 that surrounds the conical trajectory and the discs D2, spanned on them, are replaced by the

3-dimensional spheres S3 and 4-dimensional discs D4, respectively. Also the map g : S1 → U(1)

and the related first Chern class c1 are replaced by g : S3 → SU(2) and second Chern class c2, as

follows from material, presented in section 3.3. The aforementioned strong similarity of the two

cases (which borders with identity, at least in the conceptual sense), together with dealing with

much more intuitive 3-dimensional case, compared to 5-dimensional counterpart, was the actual

reason why we chose to focus on the unitary case in our presentation.

We are now in a position to briefly discuss the topology of the ballistic case for arbitrary

dimension d ≥ 3 and d ≥ 5, for the unitary and symplectic cases, respectively, now focusing on the

symplectic situation, with the unitary being interpreted by analogy. The local coordinate system

is chosen by slightly modifying the approach, presented in section 3.5 for the minimal dimension

d = 5 case. We chose the z axis along the velocity direction and achieve ĥ(e5) = fγ5 in exactly

the same way. We further choose some orthonormal, with respect to the mass-weighted scalar

product, basis set (ek | 6 ≤ k ≤ d) along the conical seam. We further impose the conditions

ĥ(ej) = fγj , for j = 1, . . . , 4, which, together with the requirement of orthogonality to the conical

seam, completely identify (ej | 1 ≤ j ≤ 4). It is natural to denote the corresponding coordinate
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components x = (x1, x2, x3, x4) The conical trajectory becomes a (d − 4)-dimensional plane that

pinches the wavepacket along a (d−4)-dimensional disc Dd−4, where the wavepacket position should

be chosen, and where the wavefunction of the scattered wavepacket turns to zero. This disc can be

winded by 3-dimensional spheres, e.g., restricting them to the x spaces, so that on each of these

spheres the polarization is topologically non-trivial, same as in the minimal dimension case. On a

more general note, in the semiclassical/ballistic approximation, with the aforementioned coordinate

choice the wavepacket evolves only along the 5 essential coordinates (x, z) with nothing happening

to its dependence on the rest of coordinates, chosen along the conical seam.

The topological nature of the scattered wavepacket structure is an important observation, due

to robustness of topological features with respect to continuous parameter changes, which implies

that when the parameter gs becomes larger, so that the ballistic approximation does not hold

quantitatively, the main features, i.e., the wavefunction turning to zero on some (d−4)-dimensional

disc, generically curved, and the topological feature of the polarization around it, will preserve, at

least in the region from small to modest values of gs, providing strong, topologically protected

evidence of the wavepacket to have passed through a conical seam.

3.7 Conclusion

In this chapter we addressed nonadiabatic effects in photoinduced dynamics of molecules with

odd number of electrons (radicals), with focus on semiclassical treatment. Similar to [126], where

spin has been not considered at all, we built a semiclassical theory that accounts for nonadiabatic

transitions, which is asymptotically exact in the ~ → 0 limit. Similar to the simpler integer spin

case, in the proper semiclassical limit nonadiabatic transitions occur only in the neighborhood of

the conical seam, whose transverse size is given by the scattering length rs. In our earlier work

nonadiabatic transitions have been accounted for via modification of the Van Vleck semiclassical

propagator, in the region where a classical trajectory passes by the conical seam. Here we developed

an equivalent, still more intuitive approach, formulated using wavepacket dynamics in the following

way. While far away from the conical seam, a wavepacket moves adiabatically and semiclassically,

according to Van Vleck picture, in particular preserving a Gaussian shape. The conical seam is

passed ballistically, with the wavepacket experiencing completely local changes, according to a

multistate (in the half-integer spin case 4-state) Landau-Zener evolution.
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There are still some important differences, implied by time-reversal symmetry, in particular

Kramers permanent degeneracy of the electronic levels/potential energy surfaces. To identify the

dynamical consequences of the aforementioned permanent degeneracy and interpret them in a clear

and intuitive way, in section 3.2 we have formulated time-reversal symmetry using proper terms,

reformulating the results of Mead [132, 133] and Matsika-Yarkony [134–137] in a form ready for

dynamical implementation. In particular, representing the electronic Hamiltonians in the vicinity

of unavoidable crossings as a linear combination of gamma-matrices, represented by σz and σx, all

three Pauli matrices, and four Dirac gamma matrices together with γ5, in the orthogonal (integer

spin), unitary (no time-reversal symmetry), and symplectic (half-integer spin) cases, respectively,

allowed later (in section 3.5) the ballistic propagation to be treated within the same framework, in

particular express the results in terms of a “standard” 2×2 Landau-Zener problem, by making use

of the gamma-matrix algebra.

We have identified the symplectic group Sp(1) as the one being responsible for Kramers degener-

acy, and pointed to its isomorphism to special unitary group SU(2), the latter being more common

in the chemical physics community. In section 3.4 we have extended the Born-Oppenheimer approx-

imation to the permanent degeneracy case, and have demonstrated that, in the semiclassical limit,

the wavefunction polarization that defines the value of the function in the double-degenerate elec-

tronic space, and is represented by a unit length 2-component complex vector, evolves completely

geometrically, according to parallel transport, the latter effect leading to a non-abelian Berry phase,

represented by an SU(2) rotation, if one moves over a close loop trajectory.

We further demonstrated, using the ballistic approximation, that once completely passed throu-

gh a conical seam, the wavepacket component that stays on the same adiabatic surface adopts a

topologically non-trivial structure: the wavefunction turns to zero on a (d−4)-dimensional surface,

represented by the points in the wavepacket that went exactly through the (d − 5)-dimensional

CS, and that in the transverse directions the polarization shows a topologically nontrivial struc-

ture. We have demonstrated that the latter is directly related to the topological invariant of CSs

in the symplectic case, namely the second Chern class c2, whereas in the orthogonal and unitary

cases the corresponding invariant, responsible for the wavepacket structure, is represented by the

first Stiefel-Whitney w1 and first Chern class c1, respectively. Such identification is an important

observation since, due to robust character of topology, the structure, described above, will not dis-
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appear when the semiclassical/ballistic approximation is no longer valid, just the aforementioned

(d− 4)-dimensional node surface will get curved, so that the topologically non-trivial polarization

structure can be viewed as a strong experimental evidence of the wavepacket to have passed through

a CS, for the measurements, sensitive to the wavefunction polarization [138], e.g., in spin-sensitive

fragment angular distributions upon photo-dissociation of half-integer spin radicals. We reiterate

that, in the integer spin case, state-of-art numerically exact propagation of nuclear wavepackets

with nonadiabatic effects accounted for explicitly, combined with the Landau-Zener spirit anal-

ysis showed the sensitivity of photo-dissociation data, available from experiments to the specific

details of the wavepacket shape, characteristic to passing through a conical seam, as well as an

excellent agreement between the Landau-Zener analysis and numerically exact results [139, 140].

Furthermore, an apparently more complicated case of triple-state crossing have been studied for

both half-integer and integer spin systems [21, 141–143]. It is worth mentioning that, the CS in a

triple crossing integer spin system has codimension 5 which equals to the CS in a double crossing

half-integer spin system, despite the different local structures of their Hamiltonian in the vicinity

of the CSs.

Obviously the ballistic approximation allows not only the shapes of the scattered wavepackets

to be determined, but also the evolution of the complete wavefunction during whole the scatter-

ing process to be followed. This can be easily achieved by replacing the limiting values of the

matrix elements in Eq. (3.44), given by Eq. (3.45), with the actual values, expressed in terms of

the parabolic cylinder functions, as presented in [126]. These should provide a clear semiclassi-

cal interpretation of the recently proposed time-resolved X-ray experiments [144, 145], capable of

providing detailed dynamical information on the nuclear wavepacket passage through a CS. It is

worth noting that in the proper adiabatic (i.e., diabatic) basis set, associated with the reference

trajectory, the wavepackets that stay and change the diabatic surface, will have a topologically

plain and topologically non-trivial polarization structure, respectively.

Finally, it would be of interest to explore a possibility of combining the presented semiclassical

dynamical view of scattering at conical intersections with widely used surface hopping algorithms,

especially the ones that properly account for the quantum phase effects, see, e.g., [58,59], to improve

their performance in the situation when conical intersections are involved.
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CHAPTER 4 SEMICLASSICAL MONTE-CARLO
APPROACH TO MODELING NONADIABATIC DYNAMICS

Reproduced from J. Chem. Phys. 141, 184101 (2014), with the permission of AIP

Publishing.

4.1 Overview

In this chapter we describe a method based on Monte-Carlo sampling of the semiclassical

time-dependent wavefunction of a molecule. The method was first reported in [Tretiak S. et

al. Semiclassical Monte-Carlo Approach for modelling non-adiabatic dynamics in ex-

tended molecules. Nat. Commun. 4:2144 doi: 10.1038/ncomms3144 (2013)]. It was

shown that the results obtained with our method are in a very good agreement with numerically

exact results for three standard sample problems (the so-called Tully problems). [52] Additionally,

comparison of the results for 1-D and 2-D test problems, [58] demonstrated that the convergence of

the method does not deteriorate with the an increase in the number of nuclear degrees of freedom.

This is a consequence of a fact that the stochasticity of the Monte-Carlo procedure is related purely

to the non-determinism in the subspace of the electronic states (between the hops nuclei propagate

according to the classical equations of motion, i.e., deterministically). This chapter is organized as

follows: In section 4.2, we will formulate the problem and describe the theory behind the numerical

method. In Section 4.3 we describe, in detail, how to carry out the SCMC simulation, and provide

an algorithm for a system with two PES. In Section 4.4 we analyze the results of the SCMC method

when applied to Tully’s 1-D test problems.

4.2 Theory

Consider a Hamiltonian with nuclear and electronic degrees of freedom:

H =
P̂2

2M
+ Ĥel(r), (4.1)

where P̂ is the N -component nuclear momentum operator (N is the number of independent nuclear

coordinates, R ≡ (R1, ..., RN )T ), M is the nuclear mass (for simplicity of notation we assume that

all nuclear degrees of freedom have the same mass, extension to different masses is straightforward)
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and Hel is the electronic Hamiltonian (which includes electronic kinetic energy and all interactions

and depends parametrically on R). The dynamics of the nuclear degrees of freedom can be conve-

niently represented in the adiabatic basis in terms of the effective Hamiltonian (see Ref. 146, 147

for details)

Ĥeff =
(P̂− d̂(r))2

2M
+ Ê(r). (4.2)

Here Ê(r) is diagonal matrix with elements being the eigenstates of the Hamiltonian Hel and d̂(r)

is the nonadiabatic (derivative) coupling matrix, dij(R) = 〈Ψi(r)| ∇r |Ψj(r)〉.

In the absence of the nonadiabatic coupling the PES’s are decoupled and the nuclei propagate on

a potential landscape given by a particular Ei(r). Formally, in order to describe quantum dynamics

for a system of N particles corresponding to Hamiltonian H0 = (P̂2/2m)+ Ê(r), one needs to solve

N + 1 dimensional Schrodinger equation (for a given PES, i.e., Ei(r)), which is an impossible task

for N � 1. However, in the classical limit, the problem reduces to solving N coupled Newton’s

equations, which is not too difficult, even for a reasonably large number of degrees of freedom.

Furthermore, in this classical or semiclassical limit one can easily construct a wavefunction of the

nuclei by utilizing a gaussian approximation:

Ψi(r, t) ∼
N∏

α=1

e
− (Rα−Rαc (t))2

2σ2
α(t)

+iPαc (t)(Rα−Rαc (t))+iSi(t)
. (4.3)

That is, the gaussian wavepacket with average momentum Pc(t) is centered around positions rc(t),

is evaluated according to the classical equations of motion, with Si(t) being the classical action of

the system produced during a time, t. For simplicity in this chapter we assume that the dispersion

of the gaussian wavepacket corresponds to that of a free particle, σ2(t) = σ2(0) + i~t/M . While

this approximation is clearly violated for PESs with sufficient curvature, for dynamics in realistic

molecules this is practically never the case. Indeed, a typical spread of the nuclear wavepacket is of

the order of nuclear zero point motion associated with the vibrational ground states of a molecule,

which is at least an order of magnitude smaller than the size of a typical electronic bond (which

sets the length scale of Ei(r)) due to large mass, M , of the nuclei. Furthermore, this approximation

did not lead to significant deviation from exact solution in the scattering results considered below.

Thus, instead of solving a N + 1 dimensional Schrodinger equation, a problem reduces to solving
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N ordinary second order differential equations.

Unfortunately, for d̂ 6= 0 this is no longer the case. One way to proceed is to use the mean

field approach and neglect the spacial dependence of the wavefunction. Such approach is easy to

implement, but it is well known that it leads to significant errors when branching of trajectories

is important. Another approach was proposed by Pechukas in the late 1960’s, [60, 61] which is an

attempt to apply the semiclassical approximation to the d̂ 6= 0 situation. Unfortunately in such

case one can only formulate an iterative procedure (which is not necessarily well convergent) that

leads to the saddle point (i.e. semiclassical) solution to the Schrodinger equation for the molecule.

Instead we propose a different approach: We write down solution to the Schrodinger equation as a

perturbative expansion in powers of d̂:

|Ψ(t)〉 = e−iĤ0t/~ |Ψ(0)〉+

∫ t

0
dt1e−iĤ0(t−t1)/~ −i

2m
(d̂P + Pd̂)e−iĤ0t1/~ |Ψ(0)〉

+

∫ t

0
dt1

∫ t1

0
dt2 . . . .

(4.4)

Eq. (4.4) is an infinite series with second and higher order terms being time ordered integrals and

containing second and higher orders of perturbation. Here we neglected the d̂2/2M term, which is

small (compared to the systems kinetic energy) in the semiclassical approximation. Moreover, this

term is diagonal and therefore it may be included in the definition of Ĥ0 if needed.

Suppose that the state |Ψ(0)〉 is a gaussian wavepacket localized on the PES 1. Furthermore

let us assume that the electronic subspace is two dimensional, i.e., there are only two close PES,

the remaining PESs are separated by large gaps so that transition probabilities are infinitesimally

small due to rapid oscillations of the integrands in Eq. (4.4). In fact such situation is usually the

case; typically only two PES cross in a relevant region of the phase space. Then d̂ = d12(r)σ̂y,

where σ̂y is a Pauli matrix and d12 is a scalar function of r. According to the above discussion

of the d̂ = 0 situation, the first term in the right hand side (r.h.s.) of Eq. (4.4) is just a gaussian

wavepacket that have propagated along the first PES according to classical equations of motion.

Let us consider the second term in the r.h.s. of Eq. (4.4) which corresponds to a ”piece” of the

wavefunction that has hopped once at time t1 from PES 1 to PES 2. It is clear that the wavepacket

right before the hopping event at t1 can be approximated as a gaussian. It is reasonable to assume

that after the scattering event at t1 the wavepacket retains its gaussian shape, but acquires an
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amplitude c (proportional to d12 at rc(t1)). Similar assumptions apply to the higher order integrals.

That is, we approximate the wavefunction in Eq. (4.4) as

|Ψ(r, t)〉 = N
(

e
− (r−r

(0)
c (t))2

2σ2(t)
+iP

(0)
c (t)(r−r(0)

c (t))+iS(0)(t) |1〉

− i

∫ t

0
dt1c[r

(0)
c (t1)]e

− (r−r
(1)
c (t))2

2σ2(t)
+iP

(1)
c (t)(r−r(1)

c (t))+iS(1)(t) |2〉

+ (−i)2

∫ t

0
dt1

∫ t1

0
dt2 c[r

(0)
c (t1)] c[r(1)

c (t2)]e
− (r−r

(2)
c (t))2

2σ2(t)
+iP

(2)
c (t)(r−r(2)

c (t))+iS(2)(t) |1〉

+ . . .
)
.

(4.5)

where the normalization constant N = π−N/4[σ(t)]−N/2 and from now on we will set ~ = 1

unless stated otherwise. In Eq. (4.5) the superscript indices for the ”classical” variables, rc, Pc,

and Sc, indicate the number of jumps. For example, r
(2)
c is a classical position for a trajectory of

the nuclei with two hops: At time t1 from PES 1 to PES 2 and back at time t2, so that r
(2)
c is a

function not only of t, but also of t1 and t2.

Eq. (4.5) is incomplete on itself: One needs to specify the c[rc(t)] as well as the value of the

momentum right after the hop. (Here we assume that neither the position nor the dispersion of

the wavepacket change immediately after the hop, which is easy to check by a simple calculation

similar to the one discussed below.) For that let us divide the time integrals in Eqs. (4.4, 4.5) into

integrals over smaller time intervals ∆t, where ∆t is smaller than the timescale at which the particle

moves over the distance at which potential E1,2(R) varies significantly. Let us consider dynamics of

the wavepacket at such interval ∆t. Assume that at the beginning of the interval the shape of the

wavepacket (for the nuclei) is φ1(r, 0) (which is not necessarily gaussian) with electrons being in

state 1. Furthermore, we assume that the wavepacket is in the semiclassical regime: On one hand it

is sufficiently localized so that it’s width, σ, is smaller than the distance at which potential E1,2(R)

varies significantly; on the other hand its momentum is well defined so that it is much greater in

magnitude than its uncertainty (σ−1). Then the parameters c[rc(t)] and P2 (the momentum after

the hop, i.e. at the PES 2) must be such that the descriptions of the wavefunction in Eq. (4.4) and

Eq. (4.5) match. That is, Eq. (4.4) on the time interval, ∆t, describes dynamics of a wavepacket

according to an effective Hamiltonian in Eq. (4.2), where, within a small ∆t, we may determine the

wavefunction as |Ψex(t)〉 = e−itĤeffφ1(r, 0) |1〉 by expanding in powers of t and setting d and E to
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be independent of r. Similarly we may evaluate the wavefunction for the gaussian approximation

in Eq. (4.5). Up to the second order in t, which is sufficient for our purposes, we may write

|Ψg(t)〉 = (1− c2t2/2)φ1(r, t) |1〉 − ictφ2(r, t) |2〉 , (4.6)

where φ2(r, t) is a normalized wavepacket at the second PES. The t2 term in Eq. (4.6) arises due

to two hop contribution in Eq. (4.5). Note that the wavefunction in Eq. (4.6) is normalized up

to O(t2). Since c and P2 =
∫
drφ∗2(r, t)P̂φ2(r, t) define occupation probabilities and system’s

momentum, we require that

〈Ψg(t)|σz|Ψg(t)〉 = 〈Ψex(t)|σz|Ψex(t)〉 , (4.7)

〈Ψg(t)|P̂|Ψg(t)〉 = 〈Ψg(t)|P̂− d12σy|Ψg(t)〉 . (4.8)

Eqs. (4.7, 4.8) provide the matching (boundary) conditions that determine values of c and P2. Note

that in the r.h.s. of Eq. (4.8) we have used the ”true” momentum of the system, which is given by

its velocity M ṙ = iM
[
Ĥeff , r

]
= P̂−d12σ̂y. The left hand side (l.h.s.) of Eq. (4.8) gives 1− 2(ct)2,

while the r.h.s. results in 1 − 2(d12P1t)
2/M2, where P1 =

∫
drφ∗1(r, t)P̂φ1(r, t). Then we obtain

that

c(r) = (d12(r) ·P1)/M = d12(t), (4.9)

with P1 being the momentum right before the hop.

Similarly, the l.h.s. of Eq. (4.8) gives P1 − (ct)2(P2 − P1), where we have assumed that t is

small enough and so the momenta P1 and P2 do not change during the evolution over the time

interval t. The r.h.s. yields P1 − d12(R)(E2 − E1)(d12(r) ·P1)t2/M , so that

P2 −P1 =
M(E2 − E1)d12(r)

d12(r) ·P1
. (4.10)

Eq. (4.10) gives a condition for the re-scaling of momentum of the wavepacket which, at first glance,

may seem to be in contradiction with that proposed by Herman [148] and used by Tully [52] in his

surface hopping algorithm. Indeed, while in Eq. (4.10) the change in the momentum at the hop is

along d12, Eq. (4.10) does not conserve the total energy at the hop. However, careful inspection

49



www.manaraa.com

reveals that Eq. (4.10) is simply the zeroth and first order terms in an expansion, in powers of

E2−E1

P2
1/2M

, of the full energy conservation condition. This is, presumably, an artifact of the short time

approximation that we used in the derivation of Eq. (4.10). Indeed, its easy to check that Eq. (4.10)

conserves energy approximately, up to the leading order in ∆E = E2 − E1. Furthermore, we have

run the test problems considered below using condition of Eq. (4.10) as well as using the exact

energy conservation condition at the hop and found very good agreement between the two in a very

broad range of initial momenta. This is a consequence of a fact that the main contribution to the

integrals in Eq. (4.5) comes from the region where ∆E is small and so the energy conservation at

the hop is satisfied. Therefore we conclude that the two conditions are essentially identical and in

the following we will be using the Herman/Tully criterion to re-scale the wavepacket’s momentum

at the hop. In the next section we will describe an efficient numerical algorithm that evaluates the

wavefunction in Eq. (4.5) using Monte-Carlo technique.

4.3 SCMC Calculation

The SCMC provides a first principles method for calculating nonadiabatic molecular dynamics,

with similar cost to surface hopping methods. The calculation occurs in two main steps: A) the

nonadiabatic propagation of classical trajectories, and B) the use of trajectory data to sample

the integrals in Eq. (4.5), with c[rc(t)] = dij(t). The classical propagation is similar to standard

surface hopping algorithms. [2, 52, 148] For simplicity, we assume that we have only two electronic

states to consider. Generalization to higher numbers of states is straightforward. [58] In the fol-

lowing subsections we describe, in algorithmic fashion, the surface-hopping dynamics, A, and the

Monte Carlo calculation of the time-dependent semi-classical wavefunction, B. Figure 4.3 shows a

diagrammatic map of the algorithm.

A1 All trajectories are initialized with the same position and momentum. Various tracked values

are initialized (see Fig. 4.3). We begin propagation of the nuclear wavepackets.

A2 Begin time step. Supplied with a molecular geometry, rc, quantum chemistry methods (e.g.

DFT and TDDFT) are used to calculate the electronic state energies, Ei(t), the Hellmann-

Feynman forces (electronic gradients), Fc, the first order nonadiabatic coupling vectors (NA-

CV), dij(rc) =
〈

Ψi(rc)
∣∣∣ ∂∂rcΨj(rc)

〉
, and scalars dij(t) =

〈
Ψi(rc(t))

∣∣ ∂
∂tΨj(rc(t))

〉
= dij(rc) ·

ṙc(t).
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B4:

Figure 4.1: Example for semiclassical Monte-Carlo surface hopping algorithm for a two electronic
state system. Green boxes - Part A (dynamics). Purple boxes - Part B (Wavefunction calculation).
Definitions are same as text.

A3 The classical particles are propagate for one time step, ∂t, on the current adiabatic surface, i,

using Newton/Lagrange equations of motion,

∂

∂t
Pc(t) = Fc(t) = − ∂

∂rc
Ei(rc(t)), (4.11)

by some numerical method, e.g. Verlet, Runga-Kutta. The classical action along the trajec-

tory,

S(t) =

∫ t

0
dt′

N∑

α

P 2
α(t′)

2Mα
− E(t′)

=

N∑

α

∫ Rαc (t)

Rαc (0)
dR̄αc Pα(R̄αc ),

(4.12)
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is calculated for subsequent use in part B. We assume our propagated gaussian nuclear

wavepackets are ”free”, i.e. they broaden with time, independent of the PES.

A4 At the end of the time step, we determine whether or not to hop to a new state, j. First, we

determine whether the hop is allowed or frustrated by, the assumed, conservation of energy,

i.e.

P2
c(t
′)

2M
+ Ei(Rc) ≥ Ej(Rc). (4.13)

If the hop is allowed the probability, γi→j(t), is calculated. If not γi→j(t) = 0. Unlike other

surface hopping methods, [2, 52, 148] the final result is formally independent of the choice

of hopping rate, assuming that the hopping rate is nonzero everywhere dij(t) is non-zero.

However the choice of hopping rate is crucial to achieve rapid convergence of the result.

A5 At each time step the hopping probability to the new state is added to the integral:

Ω(t) =

l=m∑

l=0

∫ tl+1

tl

dt′ γsl→sl+1
[rc(t

′)]. (4.14)

Here, m is the number of hops over the course of the trajectory, and tl is the time at which

the lth hop occurs (tm+1 ≡ t, sm+1 ≡ j). If RN < γi→j , where RN is a generated random

number between 0 and 1, then the trajectory hops to state j.

A6 If a hop occurs, the products:

D(tm−1 . . . t0) =

m−1∏

l=0

dsl sl+1
(tl), (4.15)

Γ(tm−1 . . . t0) =
m−1∏

l=0

γsl→sl+1
(tl) (4.16)

are multiplied by dij(t) and γi→j(t) respectively. The number of hops, m, is increased by one.

The procedure is repeated for the next time step on either the original or new state. These

dynamics continue for the desired time. Once completed, the final position, rc(t), and momentum,

Pc(t), of the trajectory are stored. The process is repeated for the specified number of trajectories.

In calculations of realistic molecular systems, A2, i.e. quantum chemistry calculation of state
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energies, forces and nonadiabatic couplings, will be the most computationally demanding step.

However, due to the independence of the dynamical trajectories, the loop beginning at A1 is

trivially parallelizable. This will greatly aid in the application of the method to larger systems.

4.3.1 Post-Processing

Information collected by the surface hopping dynamics is further analyzed in the second step

at negligible computational expense when compared to part A. Namely we calculate the nuclear

wavefunctions,

Ψi(r, t) =
∑

m

∫
dmtImi (r, t), (4.17)

or probabilities, Pi =
∫

dr |Ψi(r, t)|2. Here t ≡ {t1, . . . , tm, t} is the set of time integration vari-

ables and
∫

dmt ≡
∫ t

0 dtm
∫ tm

0 dtm−1 . . .
∫ t2

0 dt1. We independently sample integrals,
∫

dmt Imi (r, t),

which differ in the number of hops, m, and final state, i. Additionally, if there is significant sep-

aration between wavepackets, e.g. wavepackets which are reflected or transmitted in 1-D, then

integrals contributing to those wavepackets are also sampled separately. While not required for-

mally, this consideration of spacial overlap significantly improves convergence rates with minimal

loss of information. Thus, trajectories are sorted by the number of hops and final electronic state,

and grouped into spatially separated contributors of the partial wavefunctions.

Using the standard Monte Carlo approach, the integral
∫

dmt Imi (r, t), can be expressed in

terms of an expectation value:

∫
dmt Imi (r, t) =

∫
dmt

Imi (r, t)

ρmi (t)
× ρmi (t) ≈ 1

Nm
i

×
Nm
i∑

k=0

Imi (rk, tk)

ρmi (tk)
. (4.18)

Here, k is the index of a trajectory from step 1, Nm
k is the total number of trajectories with m hops

and ending in state i. ρmi (tk) is the value of the probability distribution, ρmi (t), for the trajectory

k.

The kth value of the probability distribution can be expressed as ρmi (tk) = Γmi (tk)/A
m
i . Here

Γmi (tk) is given by Eq. (4.16), and Ami =
∫

dmt Γi(t) is the normalization coefficient for trajectories

with m hops finishing in state i. Ami can be determined using statistical considerations of the

stochastic process defined by the rate γ. We consider the probability of a single trajectory finishing
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in state i with m hops for all values of t (see Supplemental of Ref. [58]):

pi =

∫
dmt Γi(t)e−Ωi(t). (4.19)

This probability can also be expressed as an expectation value, using the same probability distri-

bution, ρmi (t) = Γi(t)/Ami , from Eq. (4.18):

pi =
Ami
Nm
i

Nm
i∑

k=0

e−Ωi(tk). (4.20)

Ωi(ti) is given by Eq. (4.14). We seek the value of Ami . Thus, we assume the number of trajectories,

Nm
i , is sufficiently large so that we can replace pi with Nm

i /N , and rearrange:

Ami ≈ (Nm
i )2

[
N

Nm
i∑

k=0

e−Ωmi (tk)

]−1

,

and ρmi (tk) = Γmi (tk)
N

(Nm
i )2

Nm
i∑

k=0

e−Ωmi (tk).

(4.21)

B1 We first determine Nm
i and calculate the sum in Eq. 4.21 for every i/m pair.

B2 We calculate each Ami .

B3 For a given trajectory Imi (rk, tk) is easily calculated, see Eq. (4.5), from the surface hopping

data, Eqs. (4.11,4.12,4.15).

Imi (rk, tk) = Dk(tk)× ei(Si(tk)−Pk(t)rkc (t)) × φ(r, rkc ,P
k
c , t), (4.22)

where φ is a “free” gaussian wavepacket,

φ(r, rkc ,P
k
c , t) = 4

√
M2σ2

π(M2σ4 + t2)
eiPk(t)re

(r−rkc (t))2

σ2+ it
M , (4.23)

with the final position and momentum of the trajectory k, and an initial width, σ. At this

point the nuclear wave functions can be calculated by summing over all the trajectories,

Eq. (4.18).
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B4 Once Ψi(r, t) is known, expectation values (e.g. x, P , density matrix) can be calculated.

When the number of trajectories is low, the random error in Ψi(r, t) can be reduced by

normalization. However the effect is minimal in a well converged calculation.
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Figure 4.2: Tully’s problem set. Top Left: Problem 1-Single avoided crossing. Top Right: Problem
2- Double avoided crossing. Bottom: Problem 3- Extended coupling with reflection. Green dotted
(Purple dashed) line is lower (upper) electronic eigenstate, E1(2). Black solid line is the absolute
value of the nonadiabatic coupling vector, |d12(x)|. All values are in atomic units.

Some notes on the case of more than 2 electronic states: [1] The rate in Eq. (4.14) would be

replace with a sum over the rates to all possible new states. [2] Eqs. (4.15, 4.16) remain unchanged.

[3] Determination of which state to hop to can be determined as it is in Ref [52]. [4] For every

possible path of intermediate electronic excited states, there is an integral which must be sampled

independently. Thus each distinct path has a different probability distribution, Eq. (4.21).
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Figure 4.3: Scattering probabilities for Tully’s problem set, using, time-dependent Schödinger equa-
tion (black solid line), Ehrenfest method (blue dotted line), fewest switching surface hopping (purple
circles), and SCMC method (green squares). (a) Problem 1 - Transmission on lower (inset-upper)
surface. (b) Problem 2 - Transmission on lower (inset-upper) surface. (c) Problem 3- Reflection on
lower (inset-upper) surface. (d) Problem 3- Transmission on upper (inset-lower) surface.

4.4 Analysis of SCMC Method

In order to test the SCMC procedure we consider three two-level models proposed by Tully. [52]

Figure 4.2 shows the energy eigenstates and NACV’s of these three one-dimensional problems.

For the exact form of the Hamiltonians see Ref. [52]. For these three problems, scattering prob-

abilities calculated using the SCMC, FSSH, and Ehrenfest methods are compared to the exact

time-dependent Schrödinger equation in Gorshkov et. al. [58] In Figure 4.3, we re-present those

scattering results. For Problems 1 and 3: 25,000 and 10,000 trajectories were used for the SCMC

and FSSH approaches respectively. For Problem 2: 75,000 trajectories were used in the SCMC

calculation, while only 10,000 were used in the FSSH calculation. Here we seek to provide in-depth

analysis of these results and insight into the method. All parameters and results in this section are

in atomic units.

56



www.manaraa.com

Problem 3 provides a simple model problem where the standard implementation of the FSSH

quantitatively and qualitatively fails to reproduce the exact TD-Schrödinger result, see Fig. 4.3-c/d.

It is well known that this failure is due to the lack of decoherence. [52,149] The equation of motion

for the electronic density matrix, or complex expansion coefficients, does not include the effect of

bifurcation of nuclear wavepackets. Corrections can be introduced by hand into the FSSH algorithm

to correct for this problem. [102, 104–116] In the SCMC approach, we do not need to propagate

the electronic density matrix in order to determine hopping rates. We find the simple hopping rate

γ1→2(t) = |d12(t)| leads to accurate results for all of the test problems, see Fig. 4.3-4.4. Thus, since

we do not utilize the electronic density matrix, we do not encounter the ”over coherence” problem.

The left (right) column of Figure 4.4 shows the results of the SCMC (time-dependent Schrödinger)

calculation for Problem 3 with an initial wavefunction:

Ψ(t = 0, x) =




(πσ2)−
1
4 × exp{ikx− (x−x0)2

2σ2 }

0


, (4.24)

with initial position: x0 = −12, momentum: k = 10, and width: σ =
√

200/k, starting on the lower

eigenstate: |ψ1〉. The snapshot is taken after the wavepacket has gone through the interaction region

with a portion being transmitted on the lower adiabatic surface (bottom), or reflected on either

the lower (middle) or upper (top) surface. The SCMC wavepackets have the same momentum, p,

and positions, x, as the exact solution, indicating that our semi-classical dynamics, i.e. assumption

of conservation of energy and Newtonian equations of motion, are reasonable. The transmitted

wavepacket (bottom) calculated by SCMC shows significantly less broadening than the exact result.

This is due to our ”free” gaussian approximation, which ignores the increase in broadening due to

the negative second derivative in the energy of the lower surface from x = −5 → 0. In principle,

this is simple to account for, [150] however calculation of the second derivative of the PES would

be prohibitively expensive in a many-dimensional problem.

4.4.1 Role of Phases

While the SCMC method does a good job of reproducing the exact result, including when FSSH

and Ehrenfest methods fail, it does so at an increased cost in trajectories. In order to determine

the areas where SCMC is most applicable, we seek to understand how the convergence rate is
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Figure 4.4: Scattered wavepackets problem 3 at t = 4059. Left column - SCMC method using 25000
trajectories. Right column - TD Schrödinger equation. Top (Center) - Reflected wavepacket on
upper (lower) electronic eigenstate. Bottom- Transmitted wavepacket on lower electronic eigenstate.
Colored Solid - Wavefunction. Black Dashed- Probability Density.

affected by different models and parameters. First, we look at the simple single level crossing,

Problem 1. Figure 4.5 (Fig. 4.5-Inset) shows the relative error, δrel, in the calculated probabilities

of transmission on the upper (lower) surfaces, TU (TL), as a function of the total number of

trajectories, N . For all momentums and both probabilities, the convergence obeys an approximate

power law of the form δRel = a√
N

+b (see line fits). This O( 1√
N

) dependence of the error is standard

to Monte-Carlo methods. For TU, we see faster convergence with increasing initial momentum.

This k dependence can be understood by looking at the phase in Eq. (4.22). Assuming a one

dimensional system with two electronic states, we can calculate the phase for a trajectory which
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Figure 4.5: Average relative error percentage (δRel) of SCMC calculation, without normalization,
for Problem 1 as a function of the number of trajectories (N) for k = 10, 20, and 30. 20 calculations
per data point. Filled (Empty) Markers - Transmission probability on the upper (lower) surface.
Solid (Dashed) lines are respective fits to the data of the form δrel = a√

N
+ b

begins on the lower surface and hops once:

F1(tf , t1) = P2(tf )

(∫ t1

0
dt
P1(t)

M
+

∫ tf

t1

dt
P2(t)

M
+ x0

)
+

∫ t1

0
dt

(
P1(t)2

2M
− E1(t)

)

+

∫ tf

t1

dt

(
P2(t)2

2M
− E2(t)

)
.

(4.25)

Since all trajectories have the same final and initial times we can subtract off any term which

doesn’t depend on the time or position of the hop. Additionally, if we assume that the initial

momentum, k, is large enough that we do not have any reflection, and tf is large enough that

P2(tf ) is a constant, we can rewrite Eq. (4.25) as a relative phase that depends on the position of

the hop:

F̃1(x1) = P2f

∫ x1

x0

dx

(
1− P2(x)

P1(x)

)
+

∫ x1

x0

dx

(
P1(x)− P2(x)2

P1(x)

)
. (4.26)
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Figure 4.6: Problem 1 - Relative Phases, for single (a,b), Eq. (4.26), and double (c-f), Eq. (4.27), hop
trajectories for k=10 (left) and k=30 (right). (a,b) Black solid - |d12(x)| , Purple dotted - d12(x)×
Re(F̃1(x)), Green dashed - d12(x)×Im(F̃1(x)). (c,d) Color map of |d12(x1)d21(x2)× Re(F̃2(x1, x2))| .
(e,f) Color map of |d12(x1)d21(x2)× Im(F̃2(x1, x2))| .

∫
dx |d12(x)| ' 1.57.

With the same considerations we can write the relative phase for a trajectory with two hops:

F̃2(x1, x2) = P1f

∫ x2

x1

dx

(
1− P1(x)

P2(x)

)
+

∫ x2

x1

dx

(
P2(x)− P1(x)2

P2(x)

)
. (4.27)

In Figure 4.6 we can see that the number of oscillations, which must be sampled, is reduced

in the one (a,b) and two (c-f) hop integrals when we go from the low momentum, k = 10, to the

high momentum k = 30. Indeed for integrals of all numbers of hops the number of oscillations

will decrease with an increasing momentum. The ”smoother” integrands associated with higher

momentum are easier to sample via Monte Carlo methods. For the TL in Figure 4.5, the effect

competes with constant error sources, due to, e.g, the free gaussian approximation, which appears

as an increasing relative error with decreasing average probability (probability of TL decreases with
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increase k). This leads to the non-monotonic k dependence.

When going from a single (Problem 1) to double (Problem 2) crossing systems the integrated

area of |d12(x)| increases from 1.57 to 2.60. The number of trajectories required to sample an

integral with m hops will scale with
∫

dx |d12(x)| as:

1

m!

(∫
dx |d12(x)|

)m
. (4.28)

However, integrals with more hops, generally, will contribute less to the total wavefunction. Addi-

tionally, oscillations due to the phases, Eq. (4.26, 4.27), increase for Problem 2 (see Fig. 4.7). These

two, not independent, effects result in a much slower convergence rate for Problem 2 as compared

to Problem 1 or 3. It was shown in Ref. [58] that ∼ 3 times the number of trajectories are required

to obtain similar precision for Problem 2 as for Problems 1 and 3.
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k=15

Figure 4.7: Problem 2 - Relative Phases, for single (a), Eq. (4.26), and double (b,c), Eq. (4.27),
hop trajectories for k = 15. (a) Black solid - |d12(x)| , Green dotted - d12(x) × Re(F̃1(x)), Purple
dashed - d12(x)× Im(F̃1(x)). (b) Color map of |d12(x1)d21(x2)× Re(F̃2(x1, x2))| . (c) Color map of
|d12(x1)d21(x2)× Im(F̃2(x1, x2))| .

∫
dx |d12(x)| ' 2.60.
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4.4.2 Choice of hopping rate

In principle, the hopping rate, γi→j , is arbitrary. It is simply the choice of a probability distri-

bution for sampling the integral, Eq. (4.5). A better probability distribution leads to less samples

being required to accurately calculate the correct result. The closer the probability distribution

is to the absolute value of the normalized integrand, the better the sampling. If we knew the

normalization factor for each integrand Imi , then we would not need to run simulations. Even

if we could make a good estimate of these normalization factors, we would have to run separate

sets of trajectories, with different hopping rates, to sample different outcomes. Additionally, it is

not clear, in general, how to include the complex phases into a probability distribution, and it is

difficult to know the phases in Eq. (4.22) a priori. However, by choosing γi→j(t) = |dij(t)| we

can at least include the factor D(t) into the probability distribution. D(t) provides bounds and

amplitude to the integrands in Eq. (4.5). While there are methods to improve sampling of com-

plex valued integrands, e.g. stationary phase approximation, [151, 152] they emphasize sampling

in the same region as D(t), i.e. regions with small ∆E between PES. This leads to minimal or no

improvement. Investigating other hopping rate choices, which would effectively include the effects

from the phases, is an ongoing project.

One choice which may come to the readers mind, is the fewest switches hopping rate from

Tully [52]:

γFS
i→j(t) =





2 Im{aji(t)Vji} − 2 Re
{
aji(t)dji
aii(t)

}

0 if the value is smaller than 0

(4.29)

with

∂

∂t
aji(t) =

∑

k

(i(ajk(t)Vki − Vjkaki(t)) + ajk(t)dki − djkaki(t)). (4.30)

Here a is the electronic density matrix. Figure 4.8 shows the relative error of the SCMC calculation

for the different hopping rates, γFS
i→j and dji. In both the case where FSSH method works (Problem

1- Fig. 4.8-a), and when the FSSH method fails (Problem 2- Fig. 4.8-b), the error is extreme (see

Fig. 4.8-b inset) if the results are unnormalized, and still high even when normalized (Fig. 4.8).

There is a problem with using γFS
i→j . After one surface hop, the returning hop is frustrated, for a
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time, due to the resulting negative sign in γFS
i→j . This leads to regions of vanishing hop probability

in trajectories with more than one hop. Even without the phases this would, in principle, lead to

erroneous results.

Additionally, when the integrals are unevenly sampled without consideration of the phases, as

they are when using γFS
i→j , the sensitive constructive/destructive behavior of the phases leads to

the large error. We believe there will always be situations where any ad hoc hopping rate will lead

to poor convergence due to the imperfect accounting of the phases. The difference in the result

before (Fig. 4.5 and inset of 4.8-b) and after (Fig 4.8-a/b) normalization tells us how well the

method is working. If the change is minimal (compare Figs. 4.5 and 4.8-a), the SCMC procedure is

working well for the system. If the change is large (compare Fig. 4.8-b body and inset), the SCMC

procedure is failing.

4.5 Conclusion

The semi-classical Monte-Carlo method provides an approach, which is not ad hoc, for calcu-

lating nonadiabatic dynamics in extended molecular systems. It is based on an expansion of the

full molecular wavefunction into partial wave functions corresponding to the number of transitions

between electronic states. The procedure involves standard surface hopping dynamics with an

additional post-processing step (calculation of the wave functions from collected data). While in

the surface hopping method the hopping probability controls all of the dynamics; in SCMC it is

primarily interference between trajectories with different (or similar) phases that determines the

final result. For this reason, the SCMC method does not suffer from the same ”over coherence”

problem as the FSSH approach.

Some notes on the applicability of this method: (1) While the phases lead to difficulty in sam-

pling for small momentum, for higher momentums the sampling becomes easier. (2) Additionally,

we believe that convergence rate does not increase with increased number of system coordinates. [58]

(3) Increasing the number of crossing regions increases the number of trajectories required for sam-

pling, see Eq. (4.28), due to an increase in the area of nonadiabatic coupling and an increase in

the number of oscillations due to the phases. (4) While it has been shown that, in some systems,

FSSH approach requires complete coupling, i.e the quantum mechanical electronic dynamics re-

quires calculation of NACV for all combinations of states (1
2Ns[Ns − 1] NACV calculations), [153]
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the SCMC method with a hopping rate of |di,j(t)| requires only partial coupling (Ns − 1 NACV

calculations). When Ns becomes large the calculation of NACV’s can become the bottleneck of

the calculation. Thus improved scaling in Ns may make up for the additional trajectories needed

for sampling the wavefunction. (5) Alternatively, one could utilize this method only in the vicinity

of non-negligible NAC, in essence attacking the multi-crossing problem one crossing at a time. We

leave development of such a procedure, with comparison to full SCMC and TD-Schrödinger calcu-

lations, as well as continued efforts in improving convergence rates, and application of the SCMC

approach to realistic systems for future work.
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Figure 4.8: Averaged relative error percentage (δRel) of SCMC calculation as a function of the
number of trajectories (N). (a) Problem 1, Transmission probability on the upper surface with
normalization for k = 10, 20, and 30 (b) Problem 2, Transmission probability on the lower surface
with normalization for k = 15, 30, and 50. (b-inset) Averaged relative error percentage of unnor-
malized results. Filled markers are for γ1→2 = |d21|. Empty markers are for γ1→2 = γFS1→2. Solid
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APPENDIX A SCALAR PRODUCTS, SYMPLECTIC
FORMS, AND SYMPLECTIC GROUPS

In this appendix we present certain notation, definitions, and properties of symplectic groups,

together with some derivations. One of the reasons we wrote this appendix is that there is an

ambiguity in the notation used by several various sources.

The symplectic group Sp(2m;F), with F being a field, is the group of invertible linear operators

acting in the 2m-dimensional vector space V ∼= F2m, equipped with a symplectic form ω, preserved

by the aforementioned linear operators. Usually the cases F = R or F = C are considered. We

will focus on the case Sp(2m;C) that is relevant for our applications. A natural question arises:

why and in what way are symplectic groups closely related to time-reversal symmetry in quantum

systems? The answer can be formulated as follows. By definition, a symplectic form is just a non-

degenerate bilinear form in a (complex) vector space V , which is skew-symmetric, i.e., it satisfies

the property ω(u⊗ v) = −ω(v ⊗ u), for u, v ∈ V .

We further observe that a Hermitian scalar product, which is always a part of a game for a

quantum system, establishes a one-to-one correspondence between antilinear maps and bilinear

forms (not necessarily skew-symmetric) that is uniquely determined by the condition

ω(u⊗ v) = (u, j(v)) ∀u, v ∈ V. (A.1)

We will say that ω is compatible with the scalar product if the corresponding antilinear map j

preserves the scalar product in the sense of Eq. (3.4). In this case we have

ω(u⊗ v) = (u, j(v)) = (j(u), j2(v))∗ = (j2(v), j(u)) = ω(j2(v)⊗ u), (A.2)

which implies that in our compatible case the skew-symmetry of ω is equivalent to j2 = −1.

Therefore, there is a one-to-one correspondence between the symplectic forms compatible with the

scalar product and j2 = −1 real structures that preserve the scalar product. Stated differently,

and in more physics terms, we are considering a situation when time-reversal symmetry respects

the scalar product, the latter being the most important structure in quantum mechanics.
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In view of the above we can define a symplectic group Sp(m), also often referred to as a compact

symplectic group (since it is in fact compact), in the following way. Let V be a complex vector

space of even dimension 2m, equipped with a Hermitian scalar product and a symplectic form,

compatible with the scalar product (or equivalently a j2 = −1 real structure that preserves the

scalar product). The group Sp(m) then consists of all linear operators A acting in V that are

unitary and preserve the symplectic form (or, equivalently, commute with the corresponding real

structure):

(A(u), A(v)) = (u, v), ω(A(u)⊗A(v)) = ω(u⊗ v), jA = Aj. (A.3)

Stated in more physics terms operators that belong to Sp(m) represent unitary operators (i.e., a

quantum version of variable changes) that respect time-reversal symmetry.

At this point we would like to note that sometimes Sp(m) are denoted USp(2m) to emphasize

that it is isomorphic Sp(m) ∼= U(2m) ∩ Sp(2m;C) of unitary symplectic matrices with complex

entries. This definition is somewhat sloppy due to the following reason. The notion of unitarity

can exist only if a Hermitian scalar product is defined. The symplectic group can be properly

defined only if the symplectic form ω is compatible with the scalar product in the sense, explained

above. The compatibility condition is also often dropped out of the definition of the Sp(m) groups,

since they are usually defined in terms of matrices, using an orthonormal basis set in which the

symplectic form has a standard (canonical) form

ω =




0 I

−I 0


, (A.4)

with I being the unit m ×m matrix, and it can be straightforwardly verified that the canonical

symplectic form [Eq. (A.4)] is compatible with the canonical scalar product (associated with an

orthonormal basis set).

There is another standard, and also very convenient model for the Sp(m) group, referred to

as the unitary quaternionic group U(m;H) that consists of all invertible m × m matrices with

quaternionic entries that preserve the standard Hermitian scalar product

〈u|v〉 =

m∑

a=1

uav
∗
a ∈ H. (A.5)
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The isomorphism Sp(m) ∼= U(m;H) can be established by using real orthonormal basis sets, i.e.,

orthonormal basis sets of a form (e1, . . . , em, j(e1), . . . , j(em)). Such basis sets can be actually built

by applying an obvious extension of the Gram-Schmidt orthogonalization procedure that on each

step builds a new pair (ea, j(ea)) of the basis set elements, orthogonal to the previously chosen ones.

One then can choose (e1, . . . , em) as the basis set, forming the m-dimensional quaternionic space

Hm, to represent the linear operators acting in V that commute with the real structure j using

m ×m quaternionic matrices and show directly that an operator A preserves a Hermitian scalar

product in the 2m-dimensional complex vector space V if and only if the corresponding m × m

quaternionic matrix preserves the quaternionic scalar product, given by Eq. (A.5).

A quaternionic scalar product in a complex vector space V equipped with a Hermitian scalar

product and a real structure that preserves the latter can be introduced in an invariant way

〈u, v〉 = (u, v) + (u, J(v))j, 〈u, v〉 ∈ H; (A.6)

here for the sake of clearness of the derivations, presented below we do not overload the notation

for j, by still denoting with j the element of the quaternion algebra j ∈ H, while using J for the real

structure anti-linear map J : V → V . The introduced scalar product has the following important

properties. First, and though obvious, still very important: the quaternionic scalar product 〈u, v〉

provides two Hermitian scalar products (u, v) and (u, J(v)). Second, for an invertible operator A

the property of preserving the quaternionic scalar product is equivalent to preserving the Hermitian

scalar product and the real structure, the latter meaning [J,A] = 0. This can be demonstrated as

follows. The preservation of the quaternionic scalar product means

(A(u), A(v)) = (u, v),

(A(u), JA(v)) = (u, J(v)), ∀u, v ∈ V.
(A.7)

The first relation means preservation of the Hermitian scalar product, whereas applying the first

relation to the r.h.s. of the second one we obtain

(A(u), JA(v)) = ((A(u), AJ(v)), ∀u, v ∈ V, (A.8)
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which is equivalent to AJ = JA. Finally the following bilinear properties are in place

〈λu, v〉 = λ〈u, v〉, 〈u, λv〉 = 〈u, v〉λ∗, (A.9)

for u, v ∈ V and λ ∈ H. To verify the properties, presented in Eq. (A.9), it is enough to verify

them for λ ∈ C ⊂ H and for λ = j. For λ ∈ C we have

〈λu, v〉 = (λu, v) + (λu, J(v))j

= λ(u, v) + λ(u, J(v))j = λ〈u, v〉,

〈u, λv〉 = (u, λv) + (u, λ∗J(v))j

= λ∗(u, v) + λ(u, J(v))j

= (u, v)λ∗ + (u, J(v))jλ∗ = 〈u, v〉λ∗,

(A.10)

whereas for λ = j

〈ju, v〉 = 〈J(u), v〉 = (J(u), v) + (J(u), J(v))j

= −(u, J(v))∗ + (u, v)∗j

= j2(u, J(v))∗ + (u, v)∗j

= j(u, J(v))j + j(u, v) = j〈u, v〉,

(A.11)

〈u, jv〉 = 〈u, J(v)〉 = (u, J(v)) + (u, J2(v))j

= −(u, v)j + (u, J(v))

= −(u, v)j − (u, J(v))j2

= −〈u, v〉j = 〈u, v〉j∗.

(A.12)

The bilinear properties [Eq. (A.9)] imply that if the vectors u, v ∈ V are decomposed using an or-

thonormal, with respect to the quaternionic scalar product, quaternionic basis set, and quaternionic

coefficients ua, va ∈ H

u =
m∑

a=1

uaea, v =
m∑

a=1

vaea, 〈ea, eb〉 = δab, (A.13)

so that the quaternionic scalar product has a form of Eq. (A.5).
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We further describe the notion of a linear operator H being quaternionically Hermitian, which

naturally reads

〈H(u)|v〉 = 〈u|H(v)〉 ∀u, v ∈ V, (A.14)

or explicitly

(H(u), v) + (H(u), J(v))j = (u,H(v)) + (u, J(H(v)))j, (A.15)

or recasting further in components

(H(u), v) = (u,H(v)),

(H(u), J(v)) = (u, J(H(v))).

(A.16)

The first equality in Eq. (A.16) simply means that H is Hermitian; applying it to the second one

we arrive at

(u,HJ(v)) = (u, J(H(v))), ∀u, v ∈ V, (A.17)

which implies that [J,H] = 0. Summarizing, quaternionically Hermitian operators are exactly

Hermitian operators that commute with J , i.e., preserve the real structure.

Since quaternions do not commute we need to describe carefully how to represent linear oper-

ators in the matrix form. Consider a linear operator H that preserves the real structure, hereafter

referred to as a quaternionic operator that has the property H(λu) = λH(u) for λ ∈ H. For a

quaternionic orthonormal basis (e1, . . . , em) we can define the matrix elements with the condition

H(eb) =

m∑

b=1

Habea, Hab ∈ H, (A.18)

so that

H(u) = H

(∑

b

ubeb

)
=
∑

ab

ubHabea,

H(u)a =
∑

b

ubHab, ua, ub ∈ H,
(A.19)

which means that we can use standard matrix representation with the order of multiplication of

the matrix elements with the vector components, prescribed by Eq. (A.19).
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We conclude the discussion of the quaternionic scalar product by recalling a statement that

orthonormal in the quaternionic sense [Eq. (A.13)] basis sets are in one-to-one correspondence

with orthonormal real basis sets, introduced earlier: given a quaternionic orthonormal basis set

(e1, . . . , em) we can build a real orthonormal basis set (e1, . . . , em, J(e1), . . . , J(em)). Note that all

basis set elements e1, . . . , em, J(e1), . . . , J(em) ∈ V .

It would be instructive to note that the group Sp(m) can be viewed as the compact real coun-

terpart of Sp(2m;C) in the following sense. The latter group is complex analytical (and naturally,

being non-abelian, is non-compact), i.e., as a space it is a complex-analytical manifold. The map

J̄ : Sp(2m;C)→ Sp(2m;C), defined by J̄(A) = A† is a real structure, since it is anti-holomorphic,

i.e., transforms holomorphic functions to anti-holomorphic, preserves the group action, and satisfies

J̄2 = id. The group Sp(m) ⊂ Sp(2m;C) can be considered as the subspace of the real points of

Sp(2m;C), i.e., the fixed points of J̄ . An elementary computation, based on identification of the

Lie algebras, associated with the above Lie groups shows that Sp(2m;C), has complex dimension

m(2m + 1), whereas Sp(m) has real dimension m(2m + 1), the latter in accordance with Sp(m)

being the real counterpart of Sp(2m;C).
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APPENDIX B ORTHOGONAL GROUPS, SPINORS, AND
GAMMA-MATRICES

In this appendix we present some simple basic facts about spinors, necessary to formulate nice

interpretation of the conical intersections. A nice and concise overview of the spinors and gamma-

matrices for arbitrary dimension can be found in [154].

The orthogonal groups SO(n) with n ≥ 3 are known to be connected, but not simply connected,

the latter meaning that they have a not-contractible cycle. The group of equivalence classes (with

respect to homotopy) of one-dimensional closed curves with a given origin in a space X is called its

fundamental group, and denoted π1(X). As known π1(SO(n)) = Z2 for n ≥ 3. For any topological

group G there is a uniquely defined topological group G̃, referred to as the universal cover of G,

that covers G, i.e., G̃→ G, with π1(G̃) = 0 and the fiber, i.e., the inverse image of any point in G

with respect to the cover map, being isomorphic to π1(G). The universal (double) cover of SO(n)

is called Spin(n), so that we have Spin(n) → SO(n). A group Spin(n) has a canonical unitary

representation, referred to as the spinor representation and a set of γ-matrices (γa|a = 1, . . . , n),

acting in the space of the spinor representation, that satisfy the Clifford algebra relations

γaγb + γbγa = 2δab. (B.1)

Under the action of Spin(n) the gamma-matrices transform linearly and preserve the natural (real)

scalar product, so that elements of Spin(n) are represented by orthogonal operators acting in the

n-dimensional space Rn, spanned on the γ-matrices, which defines the cover Spin(n)→ SO(n).

There is a well-known explicit construction for γ-matrices and Spin(n), the spinor represen-

tation, which we do not give here, but rather present some basic facts. The group Spin(n) for

n = 2m and n = (2m + 1) acts in the same vector space of (complex) dimension 2m, with the

γ-matrices for n = (2m + 1) obtained by extending the set of γ-matrices for n = 2m with the

product
∏2m
a=1 γa. There are the following identifications Spin(3) ∼= SU(2) ∼= Sp(1), with the well-

known cover SU(2) → SO(3), and γ-matrices represented by the Pauli matrices σ. For n = 4 we

have Spin(4) ∼= SU(2) × SU(2), with the γ-matrices represented by the Dirac matrices. Finally
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Spin(5) ∼= Sp(2), with the action of the latter in V ∼= C4, equipped with a scalar product and a

real structure j that preserves the latter, and the γ-matrices represented by Hermitian operators

that commute with j, as described in some detail in appendix A.
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APPENDIX C DIFFERENTIAL FORMS, WEDGE
PRODUCT-S, STOKES THEOREM, AND CHERN CLASSES

In this appendix we present some basic facts and concepts, associated with differential forms,

including wedge products and multidimensional Stokes theorem, as well as representation of Chern

classes using differential forms, with applications to rationalizing Eq. (3.22) and deriving Eq. (3.23),

starting with the former. Further details on differential forms, Stokes theorem, vector bundles and

connections can be found in [155]. The original construction of Chern classes, developed by Chern,

which uses differential forms, is adopted in Chapter 3 and briefly described in this appendix, can

be found in [156].

A differential form A (of rank k) on space/manifold X is a smooth function on X, whose value

at any point x ∈ X is a skew-symmetric poly-linear (k-linear) form on the vector space of tangent to

X vectors at x. Given a system of local coordinates it can be equivalently viewed as an expression

A = Aj1j2...jk(x)dxj1 ∧ dxj2 ∧ . . . ∧ dxjk , (C.1)

where the wedge product involved in Eq. (C.1) is simply a skew-symmetric product, which just

means dxj ∧ dxi = −dxi ∧ dxj . We reiterate that throughout Chapter 3 we use the Einstein

summation convention. A wedge product of forms A and B with ranks k and l, respectively, is a

differential form A ∧B, naturally defined as

A ∧B = Ai1...ik(x)Bj1...jl(x)dxi1 . . . ∧ dxik

∧ dxj1 ∧ . . . ∧ dxjl , (C.2)

An exterior differential dA of A is a (k + 1)-rank form, defined also in a very natural way

dA =
∂

∂xj
Ai1...ik(x)dxj ∧ dxi1 . . . ∧ dxik , (C.3)
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with the following easily verifiable properties in place

A ∧B = (−1)klB ∧A,

d(A ∧B) = dA ∧B + (−1)kA ∧ dB ,

d2A = d(dA) = 0.

(C.4)

We note that the exterior differential operator can be defined in an invariant, i.e., coordinate-free

way, so that in any local coordinate system it reproduces Eq. (C.3). It is done by defining it for

functions, i.e., 0-rank differential forms, as df = (∂f/∂xj)dxj and extending it to arbitrary rank by

requiring the properties, given by Eq. (C.4) to be satisfied. Also note, that, due to skew-symmetric

character, the maximal rank of a form is given by the space dimension.

If f : X → Y is a map of manifolds, and A is a form over Y , we can introduce a form f∗A over

X, called the pull-back of A along f , in a very natural way, as

f∗A = Aα1...αk(f(x))
∂fα1(x)

∂xj1
. . .

∂fαk(x)

∂xjk
dxj1 ∧ . . . ∧ dxjk . (C.5)

Viewing f as a coordinate transformation, Eq. (C.5) can be also interpreted as the transformation

law for differential forms under coordinate transformations.

One of the reasons why differential forms are so useful is that they are designed to be integrated,

and, as opposed to just functions, they do not require an integration measure. Indeed, a maximal

rank form can be always represented as A = A(x)dx1∧. . .∧dxn, with A(x) being a function. On the

other hand, as it follows from Eq. (C.5), under coordinate change A(x) transforms via the Jacobian

J(x) = det(∂f/∂x) of the coordinate transformation. Therefore, one can define an integral of the

aforementioned differential form as

∫

X
A =

∫

X
A(x)dx1 . . . dxn, (C.6)

since the r.h.s. of Eq. (C.6) does not depend on the coordinate choice, as long as the coordinate

transformation preserves orientation, i.e., J(x) > 0. A careful reader would notice that the given

definition works locally; to make it global one can use a standard argument that involves a so-called
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partition of unity. The bottom line is that the integral of a maximal rank differential form over a

compact oriented manifold is well defined.

Most importantly, forms of lower rank can be also integrated over the cycles of the corresponding

dimension. Defining a k-cycle as a map f : M → X of a compact oriented k-dimensional manifold

to our space we define

A(f) =

∫

f
A =

∫

M
f∗A, (C.7)

and also refer to A(f) as the value of A at cycle f .

The (multidimensional) Stokes theorem claims that if M is a manifold of dimension m with

boundary ∂M , obviously of dimension m − 1, e.g., (M,∂M) = (Dm, Sm−1), mapped to X, via

f : M → X and A is a form of rank m− 1 on X, then

∫

f
dA =

∫

f |∂M
A, (C.8)

where f |∂M is the restriction of f to the boundary of M , and, in particular, for a manifold without

boundary, referred to as just a manifold, i.e., f is an m-cycle, e.g., M = Sm, the r.h.s. of Eq. (C.8)

turns to zero. The standard Stokes theorem is reproduced by setting (M,∂M) = (D2, S1), and

X = R3.

A form A is called closed if dA = 0, it is called exact if A = dB for some B; obviously due to

d2 = 0, any exact form is closed. We say that A is cohomologically equivalent to B if (A−B) is exact.

The set of equivalence (cohomology) classes [A] of closed k-forms A over X forms a vector space,

refereed to as the k-th de Rham cohomology of X and is denoted Hk(X). Obviously Hk(X) = 0

for k > n = dim(X) For a compact manifold all cohomology spaces are finite-dimensional vector

spaces. If X is connected H0(X) = R, and the cohomology classes are represented by constant

functions. If X is also orientable Hn(X) = R. The correspondence Hn(X) → R is obtained by

integrating an n-form A over the manifold X, with the result depending on its class [A] only, due

to the Stokes theorem (note that any form of maximal rank is closed).

Locally, a gauge field is represented by a 1-form A = Ajdx
j that takes values in the space of

n× n matrices, i.e., for any j, Aj is an n× n matrix with the entries Aabj , the latter could be real
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or complex numbers. A gauge transformation, associated with a matrix function g(x) has a form

A 7→ g−1Ag + g−1dg

Aj 7→ g−1Ajg + g−1 ∂g

∂xj

(C.9)

Usually the values of g(x) are restricted to special orthogonal, unitary, or special unitary matri-

ces so that g(x) ∈ G, with G = SO(n), G = U(n), and G = SU(n), respectively. In Chapter 3

only G = U(1) and G = SU(2) are involved. When the gauge transformations are restricted to

the aforementioned subgroups of the linear groups, the values of Aj are restricted to the corre-

sponding Lie algebras (the latter describing infinitesimal group transformations), represented by

real antisymmetric, complex anti-hermitian, and complex anti-hermitian with zero trace matrices

respectively. The global construction works as follows. If U, V ⊂ X are any two intersecting

neighborhoods with the gauge field represented by forms A|U and A|V , then over the intersection

U ∩ V they are allowed to be related via a gauge transformation,naturally represented by a matrix

function gUV : U ∩ V → G. Obviously, consistency conditions should be imposed, i.e., for any

three intersecting neighborhoods U, V,W ⊂ X we should have over the intersection U ∩ V ∩W

the consistency relation gUV gVW = gUW to be satisfied. A set {AU} of forms connected over

intersections U ∩ V via gauge transformations, defined by the connecting/gluing maps gUV , the

latter satisfying the aforementioned consistency conditions on all triple intersections U ∩ V ∩W ,

will be referred to as a global gauge field. The connecting/glueing data represented by a family

{gUαUβ : Uα ∩ Uβ → G}α,β∈I , with
⋃
α∈I Uα = X, that satisfy the consistency condition, define an

object, called a vector fiber bundle, in the following sense. Consider a vector-“function” on X that

is locally a function, with the local functions being glued together via the connection maps. More

formally, let Ψ = {Ψα : Uα → U}α∈I be a family of functions with the values in a vector space U ,

equipped with a Hermitian scalar product, of dimension n, referred to as a fiber, and the rank of

the bundle, respectively, so that, for any α, β ∈ I, we have Ψα(x) = gαβ(x)Ψβ(x) over Uα ∩ Uβ;

here we used abbreviated notation gαβ for gUαUβ . Then Ψ is called a global section of the vector

bundle, associated with the gluing data.

A globally defined gauge field can be interpreted as an object that allows derivatives of global

sections to be introduced. Indeed for Ψα we can define its “elongated”, or in other words covariant,
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derivative as a 1-form ∇Ψα with the values in V , as

∇Ψα = dΨα +AαΨα = (∇jΨα)dxj

∇jΨα =
∂Ψα

∂xj
+AαjΨα.

(C.10)

It is easy to see that the local definition of covariant derivatives [Eq. (C.10)] is consistent on all

Uα ∩ Uβ due to the transformation law, determined by gauge transformations [Eq. (C.9)], so that

the covariant derivative with respect to a gauge field is defined globally. Note that in the way

the material is presented here we have a notion of a gauge field and associated with the latter

vector bundle. In differential geometry it is usually formulated the other way around, one starts

with a notion of a vector bundle and then considers connections in a given vector bundle; with the

connection being a term in differential geometry for what a physicist would call a globally defined

gauge field.

The curvature F of a gauge field A is defined locally as a matrix-valued 2-form, i.e., over Uα,

we have

Fα = dAα +
1

2
[Aα,∧Aα] = Fα,ijdx

i ∧ dxj

Fα,ij =
1

2

(
∂Aαj
∂xi

− ∂Aαi
∂xj

+ [Ai, Aj ]

)
,

(C.11)

with the following gluing data on Uα ∩ Uβ

Fα(x) = g−1
αβ (x)Fβ(x)gαβ(x), (C.12)

so that the curvature can be interpreted as a 2-form with values in another vector bundle of rank

n2, and the fiber, represented by the vector space End(U) of linear operators acting in U , known

as the endomorphism bundle, associated with the original counterpart.

Chern classes ck, with k = 1, 2, . . . are invariants of vector bundles over X with ck ∈ H2k(X),

so that each Chern class is a cohomology class. In Chapter 3, to minimize the algebraic topology

involved, we will follow the original construction of Chern, i.e., use the de Rham cohomology, defined

earlier in this appendix. We start with defining a Chern class Ck(A), associated with a gauge field

A as a a 2k-differential form over X that depends on A. We further show that that Ck(A) is closed,

which allows us to introduce the corresponding de Rham cohomology class [Ck(A)] ∈ H2k(X),
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making [Ck(A)] an invariant of a gauge field. We next demonstrate that the cohomology class

[Ck(A)] does not depend on a particular choice of the gauge field, for given gluing data, or in other

words, vector bundle, so that we can define ck = [Ck(A)] as invariants of the vector bundle, rather

that a gauge field, and refer to them as Chern classes.

The original Chern construction, we have adopted here, is very simple, however, it has a disad-

vantage: it is hard to see the integer nature of Chern classes, the latter meaning that the integral

of a Chern class ck over any 2k-cycle, defined by Eq. (C.7) (and which does not depend on a choice

of a particular representative due to Stokes theorem), is an integer. Understanding the aforemen-

tioned integer nature requires bringing in the concept of a classifying space, which, for the case of

n-dimensional complex vector bundles, we are considering here, is denoted BU(n). The classifying

space is equipped with a preferred bundle over it, called the universal bundle, and any bundle over X

may be pulled back from the universal counterpart along some map f : X → BU(n), so that a Chern

class ck is pull-backs [in the sense of Eq. (C.5)] of some integer-valued basis class c̄k ∈ H2k(BU(n)),

referred to as a Chern class of the universal bundle, or simply a universal Chern class, so that c̄k

generate the complete cohomology of the classifying space. The cohomology of the classifying space

is well known due to existence of a very simple model BU(n) = colimN→G(n;N + n;C), where

G(n;M ;C) is a complex Grassmanian, whose points parameterize n-dimensional vector subspaces

of CM . We will not provide any more details on this approach, referring an interested reader to an

excellent textbook [130]. Instead, in this appendix, we will demonstrate the integer nature of c1

and c2 for the specific and relevant for us cases, considered in section 3.3 by presenting an explicit

computation. We also note that in section 3.3 we allowed minor abuse of notation, considering

the Chern classes as integer numbers, rather than cohomology classes. The exact proper meaning

of Eqs. (3.20) and (3.23) is that their l.h.s. represent the Chern classes c1 and c2, evaluated at

the fundamental classes/cycles of S2 and S4, represented by the identical maps idS2 and idS4 ,

respectively.

Explicit expressions for for the closed forms Ck(A) that represent the Chern classes are known

in a form of a generating function (that generates the classes for all k), with the gauge field entering

the expressions via its curvature F (A). Here we present the expressions for the first and second
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classes, relevant for our applications

C1(A) =
1

2π
Tr(F ) =

1

2π
Tr(Fij)dx

i ∧ dxj ,

C2(A) =
1

8π2
Tr(F ∧ F ) =

1

8π2
Tr(FijFkl)dx

i ∧ dxj ∧ dxk ∧ dxl.
(C.13)

Note that Eq. (C.13) represents a local definition, i.e., strictly speaking defines the forms Ck,α over

Uα. However, due to the cyclic property of the trace, the connecting/gluing maps for Ck,α turn out

to be identities, so that we in fact obtain the forms Ck defined globally over the whole space X.

Verification of the closed nature of Ck, i.e., checking the conditions dCk = 0 for k = 1, 2,

is a simple and straightforward exercise that involves the properties of the exterior differential

operator [Eq. (C.4)], as well as the properties of the trace and commutator. To see independence

of [Ck(A)] on a particular choice of a gauge field A for the same bundle (gluing data), we note that

if A′ = A+ a, then a gauge transformation for a does not have the second (sometimes referred to

as inhomogeneous) term in the r.h.s. of Eq. (C.9), i.e., it transforms in the exactly same way as the

curvature [Eq. (C.12)], i.e., a is a globally defined 1-form with values in the endomorphism bundle.

It is another straightforward exercise, which uses the same properties as the previous one, to show

C1(A+ a) = C1(A) +
1

2π
d(Tr(a)),

C2(A+ a) = C2(A) +
1

8π2
d(Tr(a ∧ F )) +O(a2),

(C.14)

meaning that Ck(A + a) differs from Ck(A) by an exact form, i.e., the cohomology class [Ck(A)]

does not depend on a specific choice of a representative, so that the Chern classes ck, for k = 1, 2,

are finally properly defined.

We are now in a position to rationalize Eq. (3.22) and derive Eq. (3.23) from Eq. (3.22),

addressing first the second task. To that end we note that if we denote U± ⊂ S4 the contractible

subsets of the sphere obtained by withdrawing the north and south poles that correspond to nz =

±1, respectively, then Eq. (3.21) defines a map g : U+ ∩ U− → SU(2) ∼= Sp(1) that, being viewed

as a gluing data, gives rise to an SU(2)-bundle over S4, with the non-adiabatic terms A±, defined

over U±, respectively, representing a globally defined gauge field A in the sense explained earlier in

this appendix. Therefore the l.h.s. of Eq. (3.23) represents the (integer) value of the second Chern

class c2 on the fundamental class/cycle of S4.
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We further proceed with noting that any closed form over any contractible subspace, in partic-

ular C2(A±), is exact. Another straightforward exercise shows that, for A = A±,

C2(A) =
1

8π2
dB,

B = Tr(A ∧ dA) +
1

3
Tr(A ∧ [A,∧A])

= Tr(A ∧ F )− 1

3
Tr(A ∧A ∧A), (C.15)

and note that B is known in quantum field theory as the Chern-Simons 3-form. Splitting the

integration region S4 in Eq. (3.23) into the north and south hemispheres, followed by applying the

Stokes theorem to both integrals we obtain

c2 =
1

8π2

∫

S3

∆B, ∆B = (B+ −B−)|S3 , (C.16)

with B± = B(A±), and the minus sign in the definition of ∆B is due to opposite orientations of

the hemispheres with respect to the equator S3. Also, we again, with a minor abuse of notation,

denoted with c2 the value c2(idS4) of the second Chern class on the fundamental cycle of S4. Finally

upon substitution of

A+ = g−1A−g + g−1dg, (C.17)

into the second equality in Eq. (C.16) we obtain after another straightforward computation

∫

S3

∆B =
1

3

∫

S3

Tr(g−1dg)3,

(g−1dg)3 = g−1dg ∧ g−1dg ∧ g−1dg,

(C.18)

which completes the derivation.

We conclude this appendix with presenting a more rigorous argument in support of the state-

ment that the degree deg g of a map g : S3 → SU(2) is given by Eq. (3.22). It uses a much more

invariant definition of the degree of a map f : Sn → Sn. We first recall that the pullback operation

[see Eq. (C.5)], being applied to closed forms produces a linear map f∗ : Hn(Sn)→ Hn(Sn) in the

de Rham cohomology. Since, as noted earlier, Hn(Sn) = R, this linear map is determined by a
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number, which is called deg f . Since there are integer-valued cohomology theories, e.g., singular or

bordism, that stand behind the de Rham real-valued counterpart, the degree is integer valued. We

further recognize that the integrand in the r.h.s. of Eq. (C.18) is a pullback g∗ω along g of a 3-form

ω over SU(2), obtained using the same expression by replacing g with the identity map idSU(2)

[for the sake of completeness we note that ω is a left-invariant form on SU(2)]. This implies that

Eq. (C.18) provides an integral representation for the map degree, if the normalization constant is

chosen in such a way so that in case g = idSU(2) the integral in the r.h.s. of Eq. (C.18) turns to 1.

Therefore, choosing

g(n0,σ) = σ0 + in · σ, n2
0 + n2 = 1, (C.19)

and performing integration explicitly, e.g., by just using a spherical coordinate system on S3, we

confirm that Eq. (3.22) has the proper normalization constant.
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APPENDIX D COMPUTATION DETAILS OF ACTION AND
STABILITY MATRIX FORMULATION

For the classical quadratic action with harmonic potential of path y(t)

SQ(ξ; t, t0) =
1

2

∫ t

t0

dτ

(
gjk(y(τ))

dξj(τ)

dτ

dξk(τ)

dτ
−Kjk (y(τ))ξj(τ)ξk(τ)

)
, (D.1)

where d/dτ is used instead of ∇τ for simplicity. By definition, the position ξ and momentum η

are functions of time t and satisfy

ξ(t)⊕ η(t) = M(t, t0)ξ(t0)⊕ η(t0), (D.2)

where M(t, t0) is the stability matrix and for R2 there are for polar coordinate

MP(t, t0) =




∂r(t)
∂r(t0)

∂r(t)
∂θ(t0)

∂r(t)
∂pr(t0)

∂r(t)
∂pθ(t0)

∂θ(t)
∂r(t0)

∂θ(t)
∂θ(t0)

∂θ(t)
∂pr(t0)

∂θ(t)
∂pθ(t0)

∂pr(t)
∂r(t0)

∂pr(t)
∂θ(t0)

∂pr(t)
∂pr(t0)

∂pr(t)
∂pθ(t0)

∂pθ(t)
∂r(t0)

∂pθ(t)
∂θ(t0)

∂pθ(t)
∂pr(t0)

∂pθ(t)
∂pθ(t0)




=




1 0 ∂r(t)
∂pr(t0) 0

0 1 0 ∂θ(t)
∂pθ(t0)

0 0 1 0

0 0 0 1




(D.3)

and for Cartesian coordinate

MC(t, t0) =




∂x(t)
∂x(t0)

∂x(t)
∂y(t0)

∂x(t)
∂px(t0)

∂x(t)
∂py(t0)

∂y(t)
∂x(t0)

∂y(t)
∂y(t0)

∂y(t)
∂px(t0)

∂y(t)
∂py(t0)

∂px(t)
∂x(t0)

∂px(t)
∂y(t0)

∂px(t)
∂px(t0)

∂px(t)
∂py(t0)

∂py(t)
∂x(t0)

∂py(t)
∂y(t0)

∂py(t)
∂px(t0)

∂py(t)
∂py(t0)




=




1 0 ∂r(t)
∂pr(t0) 0

0 r(t)
r(t0) − r(t)pr(t0) ∂θ(t)

∂pθ(t0) 0 r(t0)r(t) ∂θ(t)
∂pθ(t0)

0 0 1 0

0 pr(t)
r(t0) − pr(t0)pr(t)

∂θ(t)
∂pθ(t0) −

pr(t0)
r(t) 0 r(t0)

r(t) + r(t0)pr(t)
∂θ(t)
∂pθ(t0)



. (D.4)
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These two are connected by matrices Ut0 and U−1
t as

MC(t, t0) = U−1
t MP(t, t0)Ut0 , (D.5)

where

Ut0 =




∂r(t0)
∂x(t0)

∂r(t0)
∂y(t0)

∂r(t0)
∂px(t0)

∂r(t0)
∂py(t0)

∂θ(t0)
∂x(t0)

∂θ(t0)
∂y(t0)

∂θ(t0)
∂px(t0)

∂θ(t0)
∂py(t0)

∂pr(t0)
∂x(t0)

∂pr(t0)
∂y(t0)

∂pr(t0)
∂px(t0)

∂pr(t0)
∂py(t0)

∂pθ(t0)
∂x(t0)

∂pθ(t0)
∂y(t0)

∂pθ(t0)
∂px(t0)

∂pθ(t0)
∂py(t0)




=




1 0 0 0

0 1
r(t0) 0 0

0 0 1 0

0 −pr(t0) 0 r(t0)



, (D.6)

and

U−1
t =




∂x(t)
∂r(t)

∂x(t)
∂θ(t)

∂x(t)
∂pr(t)

∂x(t)
∂pθ(t)

∂y(t)
∂r(t)

∂y(t)
∂θ(t)

∂y(t)
∂pr(t)

∂y(t)
∂pθ(t)

∂px(t)
∂r(t)

∂px(t)
∂θ(t)

∂px(t)
∂pr(t)

∂px(t)
∂pθ(t)

∂py(t)
∂r(t)

∂py(t)
∂θ(t)

∂py(t)
∂pr(t)

∂py(t)
∂pθ(t)




=




1 0 0 0

0 r(t) 0 0

0 0 1 0

0 pr(t) 0 1
r(t)



. (D.7)

We denote MC(t, t0) by

MC(t, t0) =



A(t, t0) B(t, t0)

C(t, t0) D(t, t0)


, (D.8)

then the position ξ and momentum η now satisfy equations

ξj(t) = Ajk(t, t0)ξk(t0) +Bjk(t, t0)ηk(t0),

ηj(t) = Cjk (t, t0)ξk(t0) +D k
j (t, t0)ηk(t0)

(D.9)

and they also satisfies dynamical properties that

dξj(t)

dt
= gjk(y(t))ηk(t),

dηj(t)

dt
= −Kjk (y(t))ξk(t). (D.10)
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Use the time derivative of momentum equation, we can calculate the integral

∫ t

t0

dτ (−Kjk (y(τ))ξj(τ)ξk(τ)) =

∫ t

t0

dτ (
dηk(τ)

dτ
ξk(τ))

=

∫ t

t0

dηk(τ) ξk(τ)

= ηk(τ)ξk(τ)

∣∣∣∣
t

t0

−
∫ t

t0

ηk(τ) dξk(τ)

= ηk(τ)ξk(τ)

∣∣∣∣
t

t0

−
∫ t

t0

gjk(y(τ))
dξj(τ)

dτ
dξk(τ) ,

(D.11)

which tells us that

SQ(ξ; t, t0) = SQ(ξ,η; t, t0) =
1

2
ηk(τ)ξk(τ)

∣∣∣∣
t

t0

. (D.12)

Since ηk(t0) satisfies

Bjl(t, t0)ηl(t0) = ξj(t)−Ajl(t, t0)ξl(t0),

δ l
k ηl(t0) = Bkj (t, t0)ξj(t)−Bkj (t, t0)Ajl(t, t0)ξl(t0),

ηk(t0) = Bkj (t, t0)ξj(t)−Bkj (t, t0)Ajl(t, t0)ξl(t0),

(D.13)

and ηk(t) satisfies

Dm
j(t, t0)ξj(t) = Dm

j(t, t0)Ajl(t, t0)ξl(t0) +Dm
j(t, t0)Bjl(t, t0)ηl(t0),

Bmj(t, t0)ηj(t) = Bmj(t, t0)Cjl (t, t0)ξl(t0) +Bmj(t, t0)D l
j (t, t0)ηl(t0),

Dm
j(t, t0)ξj(t)−Bmj(t, t0)ηj(t) = Dm

j(t, t0)Ajl(t, t0)ξl(t0)−Bmj(t, t0)Cjl (t, t0)ξl(t0),

Dm
j(t, t0)ξj(t)−Bmj(t, t0)ηj(t) = ξm(t0),

δ j
k ηj(t) = Bkm(t, t0)Dm

j(t, t0)ξj(t)−Bkm(t, t0)ξm(t0),

ηk(t) = Bkm(t, t0)Dm
j(t, t0)ξj(t)−Bkm(t, t0)ξm(t0),

(D.14)

together we have

SQ(ξ; t, t0) = Bkm(t, t0)Dm
j(t, t0)ξj(t)ξk(t)−Bkm(t, t0)ξm(t0)ξk(t)−

Bkj (t, t0)ξj(t)ξk(t0) +Bkj (t, t0)Ajl(t, t0)ξl(t0)ξk(t0). (D.15)
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Here we define

Λjk(t, t0) = Bjl(t, t0)Dl
k(t, t0), Θjk(t, t0) = Bjl(t, t0)Alk(t, t0), Ξjk(t, t0) = Bjk(t, t0),

(D.16)

then the quadratic action from equation (D.1) can be written as

SQ(ξ; t, t0) =
1

2

(
Λjk(t, t0)ξj(t)ξk(t) + Θjk(t, t0)ξj(t0)ξk(t0)− 2Ξjk(t, t0)ξj(t)ξk(t0)

)
. (D.17)

To calculate the action S1(ξ; t1, t0) from ξ(t0) to ξ(t1), using the fact that ζj � r1(j = 1, 2), we

have

S1(ξ; t1, t0) = S1(ξ0; t1, t0) + δS1(ζ) +O
(
ζ3
)
, (D.18)

where S1(ξ0; t1, t0) is the action along reference trajectory from (−r′, 0) to (−r1, 0), which will also

be denoted as S0, when the path is not included in the argument of S. δS1(ζ) is the difference of

actual and reference trajectory up to the second order or the local coordinate ζ, which equals to

δS1(ζ) =
∂S1(t1, t0)

∂x(t1)
ζ1 +

∂S1(t1, t0)

∂y(t1)
ζ2 +

∂2S1(t1, t0)

∂x(t1)2
ζ2

1 +
∂2S1(t1, t0)

∂y(t1)2
ζ2

2

= px(t1)ζ1 +
1

2

D11(t1, t0)

B11(t1, t0)
ζ2

1 +
1

2

D22(t1, t0)

B22(t1, t0)
ζ2

2 ,

(D.19)

where the momentum px(t1) at x = −r1 is mv1

px(t1) = mv1 = m

√
2E

m
− 2fr1

m
≈ mv − fr1

v
, (D.20)

while in polar coordinates the momentum pr(t1) at r1 is

pr(t1) = −m
√

2E

m
− 2fr1

m
≈ −mv +

fr1

v
. (D.21)

From the stability matrix we can calculate

D11(t1, t0)

B11(t1, t0)
=

m

t1 − t0
. (D.22)
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We conclude that

S1(ξ; t1, t0) = S0
1(ξ; t1, t0) +mv1ζ1 +

m

2(t1 − t0)
ζ2

1 +
1

2

D22(t1, t0)

B22(t1, t0)
ζ2

2 , (D.23)

Using the same treatment we do with action S1(ξ0; t1, t0), we get

S2(ξ; t, t2) = S2(ξ0; t, t2) + δS2(γ) +O
(
γ3
)
, (D.24)

with up to the second order correction

δS2(γ) =
∂S2(t, t2)

∂x(t2)
γ1 +

∂S2(t, t2)

∂y(t2)
γ2 +

∂2S2(t, t2)

∂x(t2)2
γ2

1 +
∂2S2(t, t2)

∂y(t2)2
γ2

2

= −px(t2)γ1 − py(t2)γ2 +
1

2

A11(t, t2)

B11(t, t2)
γ2

1 +
1

2

A22(t, t2)

B22(t, t2)
γ2

2 .

(D.25)

The momentum in polar coordinate pr(t2) at r2 is

pr(t2) = m

√
v2 − 2

f

m
r2 ≈ mv −

fr2

v
, (D.26)

so the corresponding Cartesian momenta at r2 are

px(t2) = mv2 = m cos θ

√
v2 − 2

f

m
r2 ≈ mv −

fr2

v
,

py(t2) = m sin θ

√
v2 − 2

f

m
r2 ≈ mvθ −

fr2

v
θ.

(D.27)

Also the stability matrix tells us

A11(t, t2)

B11(t, t2)
=

m

t− t2
, (D.28)

so the action S2(ξ; t, t2) equals to

S2(ξ; t, t2) = S2(ξ0; t, t2)−mv2γ1 −mv2θγ2 +
m

2(t− t2)
γ2

1 +
1

2

A22(t, t2)

B22(t, t2)
γ2

2 , (D.29)

The terms A22, B22 , and D22 from the stability matrix need to be calculated for different time
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intervals. For B22(t1, t0), we use the fact that r1 � r′ and use the limit r1 → 0, we have

B22(t1, t0) = r(t0)r(t1)
∂θ(t1)

∂pθ(t0)

= r′r1

(
1√

2mE

(
1

r′
− 1

r1

)
+

f

2E
√

2mE
ln
(r1

r′

))

=
1√

2mE

(
r1 − r′

)
+

fr′r1

2E
√

2mE
ln
(r1

r′

)

= − r′√
2mE

= − r′

mv
,

(D.30)

similarly, we can get

B22(t, t2) = r(t2)r(t)
∂θ(t)

∂pθ(t2)

=
r′′

mv
.

(D.31)

For D22(t1, t0), we have

D22(t1, t0) =
r(t0)

r(t1)
+ r(t0)pr(t1)

∂θ(t1)

∂pθ(t0)

=
r′

r1
+ r′

pr(t1)√
2mE

(
1

r′
− 1

r1

)
+ r′

pr(t1)f

2E
√

2mE
ln
(r1

r′

)

=
2r′

r1
− 1 +

fr1

mv2
− fr′

mv2
− fr′

mv2
ln
(r1

r′

)
+
f2r1r

′

m2v4
ln
(r1

r′

)

≈ r′f

mv2
ln

(
E

r1f

)
,

(D.32)

where we have used the facts that E/f ∼ O(r′), and since r(t1)� r(t0) we have

r′f

mv2
ln

(
E

r′f

)
� r′f

mv2
ln

(
E

r1f

)
, (D.33)

and

1� r′f

mv2
ln

(
E

r1f

)
. (D.34)
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For A22(t, t2), since r(t2)� r(t), we have

A22(t, t2) =
r(t)

r(t2)
− r(t)pr(t2)

∂θ(t)

∂pθ(t2)

=
r′′

r2
− r′′ pr(t2)√

2mE

(
1

r2
− 1

r′′

)
− r′′ pr(t2)f

2E
√

2mE
ln

(
r′′

r2

)

≈ − r
′′f

mv2
ln

(
E

r2f

)
.

(D.35)

So the actions S1(ξ; t1, t0) and S2(ξ; t, t2) equal to

S1(ξ; t1, t0) = S1(ξ0; t1, t0) +mv1ζ1 +
mζ2

1

2(t1 − t0)
− fζ2

2

2v
ln

(
E

r1f

)
, (D.36)

and

S2(ξ; t, t2) = S2(ξ0; t, t2)−mv2γ1 −mv2θγ2 +
mγ2

1

2(t− t2)
− fγ2

2

2v
ln

(
E

r2f

)
. (D.37)
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ABSTRACT

NONADIABATIC DYNAMICS: GENERAL THEORY AND

SEMICLASSICAL APPROACH

by

RUIXI WANG
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Advisor: Dr. Vladimir Y. Chernyak

Major: Chemistry (Physical)

Degree: Doctor of Philosophy

Nonadiabatic dynamics has been an essential part of quantum chemistry since the 1930’s. Nona-

diabatic effects play a crucial role in photo-physical and photo-chemical reactions for both small

and large molecules in both gas and condensed phases. Modeling dynamics of photoinduced re-

actions has been a new frontier of chemistry. Many dynamical phenomena, such as intersystem

crossing, non-radiative relaxation, and charge energy transfer, require a nonadiabatic description

which incorporates transitions between electronic states.

In Chapter 2, the property of scattering region in the semiclassical limit is investigated. We

suggest that a nuclear wavepacket close enough to the conical intersection will propagate ballistically

in a straight line through the scattering region with distance λ+, the impact parameter, away from

the conical intersection. Upon taking the semiclassical limit, we have proven that in a certain

neighborhood of the conical intersection, the adiabatic propagation and ballistic propagation are

both valid. The resulted complete propagator is governed by the semiclassical propagation along

the reference path which connects the initial and final points, and an integration over the impact

parameter, hence only depends on the initial and final classical states of the system.

In Chapter 3, we identify the main differences between the effects of Kramers symmetry on the

systems with even and odd number of electrons, the ways how the aforementioned symmetry af-

fects the structure of the Conical Seams (CSs), and how it shows up in semiclassical propagation of

nuclear wavepackets, crossing the CSs. We identify the topological invariants, associated with CSs,
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in three cases: even and odd number of electrons with time-reversal symmetry, as well as absence of

the latter. We obtain asymptotically exact semiclassical analytical solutions for wavepackets scat-

tered on a CS for all three cases, identify topological features in a non-trivial shape of the scattered

wavepacket, and connect them to the topological invariants, associated with CSs. We argue that,

due to robustness of topology, the non-trivial wavepacket structure is a topologically protected

evidence of a wavepacket having passed through a CS, rather than a feature of a semiclassical

approximation.

In Chapter 4, we present, in detail, an algorithm based on Monte-Carlo sampling of the semi-

classical time-dependent wavefunction, that involves running simple surface hopping dynamics,

followed by a post-processing step which adds little cost. The method requires only a few quanti-

ties from quantum chemistry calculations, can systematically be improved, and provides excellent

agreement with exact quantum mechanical results. Here we show excellent agreement with exact

solutions for scattering results of standard test problems. Additionally, we find that convergence

of the wavefunction is controlled by complex valued phase factors, the size of the nonadiabatic

coupling region, and the choice of sampling function. These results help in determining the range

of applicability of the method, and provide a starting point for further improvement.

107



www.manaraa.com

AUTOBIOGRAPHICAL STATEMENT

RUIXI WANG

Education

12/2019 Ph.D., Chemistry (Physical), Wayne State University.

05/2012 B.S., Chemistry (with honor), New Mexico State University.

01/2010 Chemistry, Sichuan University.

Publications

• White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky,

Dmitry. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular

dynamics, J. Chem. Phys., 141, 184101 (2014).

• Wang, Ruixi; Chernyak, Vladimir Y.; Dynamical Consequences of Time-Reversal Symmetry

for Systems with Odd Number of Electrons: Conical Intersections, Semiclassical Dynamics,

and Topology, Chem. Phys., 515, 3-20 (2018).

Experience

• Graduate Teaching Assistant, Wayne State University. Physical Chemistry and Laboratory,

General Chemistry and Laboratory, September 2012 - May 2014, September 2014 - August

2017.

• Graduate Student Assistant, Wayne State University. Chemicals Barcoding. September 2017

- May 2018.

• Summer Graduate Student, Los Alamos National Laboratory. June 2014 - August 2014.

108


	Nonadiabatic Dynamics: A Semiclassical Approach
	Recommended Citation

	tmp.1609956005.pdf.U8V03

